
Operator Rules 

Our work with these differential operators will be based on several 
rules they satisfy. In stating these rules, we will always assume that the 
functions involved are sufficiently differentiable, so that the operators can 
be applied to them. 

Sum rule. If p(D) and q(D) are polynomial operators, then for any (suffi
ciently differentiable) function u, 

[p(D) + q(D)]u = p(D)u + q(D)u . (1) 

Linearity rule. If f and g are functions and c1 and c2 are constants, 

p(D) (c1 f + c2 g) = c1 p(D) f + c2 p(D) g . (2) 

Proof of the linearity rule: This rule follows from the linearity of differen
tiation. That is, 

D(c1 f + c2g) = (c1 f + c2 g)� = c1 f � + c2g� = c1Du1 + c2Du2. 

Similarly taking the second or higher derivative also follows the linearity 
rule . That is, 

Dn(c1 f + c2 g) = 
dn 

(c1 f + c2 g) = c1 f (n) + c2g(n) = c1 Dn f + c2 Dng.
dt 

Next, we can scale the linear operator Dn by a and it stays linear. That is, 

(n)aDn(c1 f + c2 g) = a 
dn 

(c1 f + c2g) = c1a f (n) + c2ag = c1aDn f + c2aDng
dt 

(Notice that a does not actually have to be a constant, it can be a function 
of t (or of whatever independent variable we’re using). ) 

Finally we can combine these operators into a polynomial operator 

Dn + a1Dn−1 + . . . + an−1 D + an 

which clearly still obeys the linearity rule. � 
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Multiplication rule. If p(D) = g(D) h(D) as polynomials 
in D, then � � 

p(D) u = g(D) h(D) u . (3) 

The picture illustrates the meaning of the right side of (3). 
The property is true when h(D) is the simple operator a Dk , 
essentially because 

Dm(a Dku) = a Dm+ku. 

It extends to general polynomial operators h(D) by linearity. 
Note that here a must be a constant; it’s false otherwise. p(D)u

u
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An important corollary of the multiplication property is that polynomial 
operators with constant coefficients commute; i.e., for every function u(t), 

g(D) h(D) u = h(D) g(D) u . (4) 

As polynomials, g(D)h(D) = h(D)g(D) = p(D) therefore by the multi
plication rule, both sides of (4) are equal to p(D) u and therefore equal to 
each other. 

The remaining two rules are of a different type and are more concrete: 
they tell us how polynomial operators behave when applied to exponential 
functions and products involving exponential functions. 

Substitution rule. 
p(D)eat = p(a)eat (5) 

Proof. We have, by repeated differentiation, 

Deat = aeat , D2eat = a2eat , . . . , Dkeat = akeat; 

therefore, 

(Dn + c1Dn−1 + . . . + cn) eat = (an + c1an−1 + . . . + cn) eat ,


which is the substitution rule (5). �


The exponential-shift rule This handles expressions such as tkeat and

tk sin at. Let u = u(t). Then 

p(D) eatu = eat p(D + a) u . (6) 

Proof. We prove it in successive stages. First, it is true when p(D) = D, 
since by the product rule for differentiation, 

Deatu(t) = eat Du(t) + aeatu(t) = eat(D + a)u(t). (7) 
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To show the rule is true for Dk , we apply (7) to D repeatedly: 

D2eatu = D(Deatu) = D(eat(D +� a)u) � by (7); 
= eat(D + a) (D + a)u , by (7); 
= eat(D + a)2u , by (3). 

In the same way, 

D3eatu = D(D2eatu) = D(eat(D +� a)
2u) � by the above; 

= eat(D + a) (D + a)2u , by (7); 
= eat(D + a)3u , by (3), 

and so on. This shows that (6) is true for an operator of the form Dk . To 
show it is true for a general operator 

p(D) = Dn + a1Dn−1 + . . . + an , 

we write (6) for each Dk(eatu), multiply both sides by the coefficient ak, 
and add up the resulting equations for the different values of k. � 

3




MIT OpenCourseWare
http://ocw.mit.edu 

18.03SC Differential Equations�� 
Fall 2011 �� 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



