
Part II Problems 

Problem 1: [Direction fields, isoclines] In this problem you will study solutions of the 
differential equation 

dy 
= y2  x .

dx 
−

Solutions of this equation do not admit expressions in terms of the standard functions of 
calculus, but we can study them anyway using the direction field. 

(a) Draw a large pair of axes and mark off units from −4 to +4 on both. Sketch the direction 
field given by our equation. Do this by first sketching the isoclines for slopes m = −1, 
m = 0, m = 1, and m = 2. On this same graph, sketch, as best you can, a couple of 
solutions, using just the information given by these four isoclines. 

Having done this, you will continue to investigate this equation using one of the Math-
lets. So invoke http://math.mit.edu/mathlets/mathlets in a web browser and select 
Isoclines from the menu. (To run the applet from this window, click the little black box 
with a white triangle inside.) Play around with this applet for a little while. The Math-
lets have many features in common, and once you get used to one it will be quicker to 
learn how to operate the next one. Clicking on “Help” pops up a window with a brief 
description of the applet’s functionalities. 

Select from the pull-down menu our differential equation y' = y2 − x. Move the m slider 
to m = −2 and release it; the m = −2 isocline is drawn. Do the same for m = 0, m = 1, 
and m = 2. Compare with your sketches. Then depress the mousekey over the graphing 
window and drag it around; you see a variety of solutions. How do they compare with 
what you drew earlier? 

(b) A separatrix is a curve such that above it solutions behave (as x increases) in one way, 
while below it solutions behave (as x increases) in quite a different way. There is a sepa
ratrix for this equation such that solutions above it grow without bound (as x increases) 
while solutions below it eventually decrease (as x increases). Use the applet to find its 
graph, and submit a sketch of your result. 

(c) Suppose y(x) is a solution to this differential equation whose graph is tangent to the 
m = −1 isocline: it touches the m = −1 isocline at a point (a, b), and the two curves have 
the same slope at that point. Find this point on the applet, and then calculuate the values 
of a and b. 

(d) Now suppose that y(x) is a solution to the equation for which y(a) < b, where (a, b) is 
the point you found in (c). What happens to it as x  ∞? I claim that its graph is asymp√ →
totic to the graph of f (x) = − x. Explain why this is so. For large x, is y(x) > f (x), 
y(x) < f (x), or does the answer depend on the value of y(a)? 
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The following observations will be useful in justifying your claims. Please explain as 
clearly as you can why each is true. 
(i) The graph of y(x) can’t cross the m = −1 isocline at a point (x, y) with x > a. 
(ii) If c > a and y(c) lies above the nullcline, then the graph of y(x) continues to lie above 
the nullcline for all x > c. 

(iii) If c > a and y(c) lies below the nullcline, then the graph of y(x) will cross the nullcline 
for some x > c. 

(e) Suppose a solution y(x) has a critical point at (c, d)—that is, y ' (c) = 0 and y(c) = d. 
What can you say about the relationship between c and d? The applet can be very helpful 
here, but verify your answer. 

(f) It appears from the applet that all critical points are local maxima. Is that true? 
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