18.03SC Practice Problems 23

Fourier Series: Harmonic response

If $g(x)$ is a piecewise continuous periodic function and $2 L$ is a period, then

$$
g(x)=\frac{a_{0}}{2}+a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots+b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots
$$

The Fourier coefficients are defined as the numbers fitting into this expression. They can be calculated using the integral formulas

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} g(x) \cos \left(\frac{n \pi x}{L}\right) d x, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

$\ddot{x}+\omega_{n}^{2} x=A \cos (\omega t)$ has solution $A \frac{\cos (\omega t)}{\omega_{n}^{2}-\omega^{2}}$ and
$\ddot{x}+\omega_{n}^{2} x=A \sin (\omega t)$ has solution $A \frac{\sin (\omega t)}{\omega_{n}^{2}-\omega^{2}}$ as long as $\omega \neq \omega_{n}$.

1. Let $f(t)$ denote the even function $f(t)$ which is periodic of period 2π and such that $f(t)=|t|$ for $-\pi<t<\pi$. Graph $f(t)$.
In lecture we found that the Fourier series of $f(t)$ is given by

$$
f(t)=\frac{\pi}{2}-\frac{4}{\pi}\left(\cos (t)+\frac{\cos (3 t)}{3^{2}}+\frac{\cos (5 t)}{5^{2}}+\cdots\right)
$$

Now we want to alter $f(t)$ to produce a function $g(t)$ whose graph is the same as that of $f(t)$ but is compressed (or expanded) horizontally so that the angular frequency is ω. What is the formula for $g(t)$ in terms of $f(t)$? Use the Fourier series for $f(t)$ and a substitution to find the Fourier series for the function $g(t)$.
2. Next drive a simple harmonic oscillator with the function $f(t)$ from (1). This gives the differential equation

$$
\ddot{x}+\omega_{n}^{2} x=f(t) .
$$

Find a periodic solution, when one exists, as a Fourier series.
3. Now drive the same harmonic oscillator with the function $g(t)$ from (1) of angular frequency ω, obtaining the following differential equation for the response:

$$
\ddot{x}+\omega_{n}^{2} x=g(t) .
$$

Again, find a periodic solution, when one exists.
4. Suppose that ω is fixed, but that we can vary ω_{n}. This would be the case, for example, if we had a radio receiver and wanted to pick up (amplify) radio signals
at or near a certain angular frequency. Then we would set the capacitance so that the natural frequency of the circuit would be some (variable) ω_{n}.
You might have already answered this question in your solutions to (2) and (3), but at what values of ω_{n} does the harmonic oscillator fail to have a periodic system response? Describe the system response when ω_{n} is just larger or just smaller than one of those values.
5. Are there frequencies at which there is more than one periodic solution?

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

