Part I Problems and Solutions

Problem 1: a) Find a solution of $\dot{x}+2 x=e^{3 t}$ of the form $B e^{3 t}$. Then find the general solution.
b) Now do the same for the complex-valued differential equation $\dot{x}+2 x=e^{3 i t}$.

Solution: a) Assume $x_{p}(t)=B e^{3 t}$ satisfies $\dot{x}+2 x=e^{3 t}$ then substituting this into the DE we get

$$
\begin{aligned}
& \dot{x}+2 x=e^{3 t} \\
\Rightarrow & 3 B e^{3 t}+2 B e^{3 t}=e^{3 t} \\
\Rightarrow & 5 B e^{3 t}=e^{3 t} \\
\Rightarrow & 5 B=1 \\
\Rightarrow & B=1 / 5 .
\end{aligned}
$$

So, a particular solution is $x_{p}(t)=\frac{1}{5} e^{3 t}$.
The solution to the homogeneous equation $\dot{x}+2 x=0$ is $x_{h}(t)=C e^{-2 t}$. The general solution to the original DE is of the form $x=x_{p}+x_{h}$, so

$$
x=\frac{1}{5} e^{3 t}+C e^{-2 t} .
$$

b) Similarly, assume $x_{p}=B e^{3 i t}$ then substituting this into the DE gives

$$
\dot{x}+2 x=B(3 i+2) e^{3 i t}=e^{3 i t} \Rightarrow B=\frac{1}{2+3 i}=\frac{2-3 i}{13} .
$$

Thus,

$$
x_{p}=\frac{2-3 i}{13} e^{3 i t} .
$$

The homogeneous solution is the same as in part (a): $x_{h}=C e^{-2 t}$. Again by superposition the general solution to the DE is

$$
x=x_{p}+x_{h}=\left(\frac{2-3 i}{13}\right) e^{3 i t}+C e^{-2 t} .
$$

Remark: This problem is unusual in asking for a complex solution. In this class we will most often ask for the real solution with x_{p} in amplitude phase form.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

