18.03SC Practice Problems 6

Complex numbers

Solution Suggestions

1. Mark $z=1+\sqrt{3} i$ on the complex plane. What are its polar coordinates? Then mark z^{n} for $n=1,2,3,4$. What is each in the form $a+b i$? What is each one in the form $A e^{i \theta}$? Then mark z^{n} for $n=0,-1,-2,-3,-4$.

Here is a picture of z marked on the complex plane.

Figure 1: $z=1+\sqrt{3} i$ on the complex plane.
The complex number z has radius (a.k.a. modulus or magnitude) $r=|z|=$ $\sqrt{1+3}=2$ and, from the figure, angle (a.k.a. argument) $\theta=\operatorname{Arg}(z)=60^{\circ}=\pi / 3$ radians. That is, z has polar coordinates $(r, \theta)=(2, \pi / 3)$.
Recall that that when multiplying complex numbers, "magnitudes multiply, arguments add." Compute the magnitude and argument of z^{n} for $n=1,2,3,4$ as in the following table.

n	$\left\|z^{n}\right\|=\|z\|^{n}$	$\operatorname{Arg}\left(z^{n}\right)=n \cdot \operatorname{Arg}(z)$
1	2	$\pi / 3$
2	4	$2 \pi / 3$
3	8	π
4	16	$4 \pi / 3$

Use this table to mark these positive powers of z on the complex plane as in Figure 2. Note that the second figure has a different scale than the first one.

Figure 2: z^{n} for $n=1,2,3,4$ on the complex plane.
In rectangular form, $z^{n}=r^{n}(\cos (n \theta)+i \sin (n \theta))$. Thus

$$
\begin{gathered}
z^{2}=4(\cos (2 \pi / 3)+i \sin (2 \pi / 3))=-2+2 \sqrt{3} i \\
z^{3}=8(-1)=-8, \\
z^{4}=16(\cos (4 \pi / 3)+i \sin (4 \pi / 3))=-8-8 \sqrt{3} i,
\end{gathered}
$$

which match the figure.
In polar form, $z^{n}=r^{n} e^{i n \theta}$. So $z=2 e^{i \pi / 3}, \quad z^{2}=4 e^{i 2 \pi / 3}, \quad z^{3}=8 e^{i \pi}, \quad z^{4}=$ $16 e^{i 4 \pi / 3}$, which we could have read off from the table.
Now, $z^{0}=1$, and negative powers have inverse radius and negative argument of the positive powers: $z^{-n}=r^{-n} e^{-i n \theta}$ is on the radial line of $-n \pi / 3$ with radius 2^{-k} for $k=1,2,3,4$. Use this to mark each on the complex plane as in Figure 3.

Figure 3: z^{n} for $n=0,-1,-2,-3,-4$ on the complex plane.
2. Find a complex number $a+b i$ such that $e^{a+b i}=1+\sqrt{3} i$. In fact, find all such complex numbers. For definiteness, fix b to be positive but as small as possible. (This is probably the
first one you thought of.) What is $e^{n(a+b i)}$ for $n=1,2,3,4$? (Hint: $e^{n(a+b i)}=\left(e^{a+b i}\right)^{n}$.) How about for $n=0,-1,-2,-3,-4$?
The complex number $e^{a+b i}=e^{a} e^{b i}$ has modulus e^{a} and argument b. The modulus of a complex number is uniquely defined, while the argument is only determined up to adding multiples of 2π. So if $e^{a+b i}=1+\sqrt{3} i$, we must have $e^{a}=2$ and $b=\pi / 3+2 k \pi$ for any integer k. Thus, $a+b i$ can be any complex number of the form $\ln 2+i(\pi / 3+2 k \pi)$ for some integer k. The smallest positive value of b is $\pi / 3$, so take

$$
a+b i=\ln 2+i \pi / 3 .
$$

Following the hint, $e^{n(a+b i)}=(1+\sqrt{3} i)^{n}$, which we computed in Question 1. That is, for $n=1,2,3,4$, this is $1+\sqrt{3} i, \quad-2+2 \sqrt{3} i, \quad-8, \quad-8-8 \sqrt{3} i$, respectively, and for $n=0,-1,-2,-3,-4$, we have $1,2^{-1} e^{-i \pi / 3}=\frac{1-\sqrt{3} i}{4}, 2^{-2} e^{-i 2 \pi / 3}=\frac{-1-\sqrt{3} i}{8}$, $2^{-3} e^{-i \pi}=-1 / 8$, and $2^{-4} e^{-i 4 \pi / 3}=\frac{-1+\sqrt{3} i}{32}$. Note that we did not actually need the values we found for a and b to answer this part of the question.

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations] [

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

