
Modes and Roots 

A solution of the form x(t) = cert to the homogeneous constant coeffi
cient linear equation 

a x(n) + (n−1) .
n  an 1x + · · · + a1x + a0x = 0 (1) −

is called a modal solution and cert is called a mode of the system. We saw 
previously that ert is a solution exactly when r is a root of the characteristic 
polynomial 

p a n n 1(s) = ns + an 1s − + · · · + a− 1s + a0. 

Warning: This only works for homogeneous constant coefficient linear equa
tions. It does not work for non-constant coefficient or inhomogeneous or 
nonlinear equations. 

The roots of polynomials can be real or non-real complex numbers. (We 
need to be a little careful with our language because a real number is also 
a complex number with imaginary part 0.) Roots can also be repeated. 
Studying the second order equation will be enough to help us understand 
all of these possibilities. So, we study (with a2 = m, a1 = b, a0 = k) 

.. . 
mx + bx + kx = 0. (2) 

which models a spring-mass-dashpot system with no external force. The 
characteristic equation is 

ms2 + bs + k = 0. 

1. Real Roots 

We have already done this case earlier in this session. If the character
istic polynomial has real roots r1 and r2 then the modal solutions to (2) are 
x  t 

1(t r) = er1t and x2(t) = e 2 . The general solution is found by superposition 

x r t r t(t) = c1x 1(t) + c2x 2(t) = c e 1 2
1 + c2e . 

.. .
Example 1. (Real roots) Solve the x + 5x + 4x = 0. 

Solution. The characteristic equation is s2 + 5s + 4 = 0. This factors as 
(s + 1)(s + 4) = 0, so it has roots -1, -4. The modal solutions are x1(t) = e−t 

and x2(t 4) = e− t. Therefore, the general solution is 

x −t −4t(t) = c1e + c2e . 
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2. Complex Roots 

(Again, if we were being completely precise, this section would be called 
non-real complex roots to indicate a complex number with non-zero imagi
nary part.) 

.. .
Example 2. Solve the equation x + 4x + 5x = 0. 

Solution. The characteristic polynomial is s2 + 4s + 5. Using the quadratic 
formula the roots are 

√ 
4 

s =
− ± 16 − 20 

= 2 
√ 

− ± −1 = −2 ± i. 
2 

So our exponential solutions are 

z t  e(−2 t ( +i  −2−i t
1 ) = ) and z ( )

2(t ) = e . 

We use the letter z here to indicate the functions are complex valued. 

The general solution is a linear combination of these two basic solutions. 
But, because the DE has real coefficients, we were expecting real valued so
lutions. We will finish this example and get our real solutions after stating 
and proving the following theorem. 

Theorem (Real Solution Theorem): .. .
If z(t) is a complex-valued solution to mz + bz + kz = 0, where m, b, and k 
are real, then the real and imaginary parts of z are also solutions. 

Proof: Let u(t) be the real part of z and v(t) the imaginary part, so z(t) = 
u(t) + iv(t). Now, build the table. 

k] z = u + iv . . .
b] z = u + iv .. .. .. 

m] z = u + iv 

Summing with the coefficients (and remembering z is a solution to the ho
mogeneous DE) gives 

.. . .. . 
(mu + bu + ku) + i(mv + bv + kv) = 0. 

Both expressions in parentheses are real, so the only way the sum can be 
zero is for both of them to be zero. That is, both u and v are solutions of (2) 
as claimed. 

Back to the example: Using Euler’s formula 

z (−2+i(t) = e )t 2t
1 = e− cos t + ie−2t sin t. 

2 
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The real part of e−2t cos t  ie−2t + sin t is e−2t cos t and the imaginary part 
is e−2t sin t. We now have two basic solutions and can use superposition to 
find the general real valued solution 

x −2t(t t )  c1e cos(t 2= ) + c2e− sin(t). 

Or we could have also written it as 

x(t) = e−2t 2(c1 cos t + c2 sin t  t ) = Ae− cos(t − φ). 

This is a damped sinusoid with circular pseudo-frequency 1. 

If we had chosen the other exponential solution 

z 2 i t 2t
2(t) = e(− − ) = e− (cos(−t) + i sin(−t)) 

then the basic real solutions would be 

e−2t cos(−t) = e−2t cos −2t −2t(t) and e sin(−t) = −e sin(t). 

Up to a sign these are the same basic solutions as was obtained from z1, so 
z2(t) would have work just as well. 

.. .
Example 3. Solve x + x + x = 0. 

Solution. Characteristic equation: s2 + s + 1 
1 

√ = 0.√  
− ± 1 − 4 1 3

Roots: = 
− ± i .

2 2 2 √ √ 
Complex exponential solutions: z t  e( −1+i 3)t/2, z t  e(−1−i 3 t( ) = = ) /2 

1 2( )
Basic real solutions: x1(t) = Re(z1(t))  e− t/2 cos  

√
3t/2 , Im z t  
 

e−t/2 sin( 
√ = ( ) ( 1( )) =

3t/2).
 
General real solution:
 

√   
x(t) = e−t/2(c1 cos( 3t/2 ) + c sin  

√
3 t/2   Ae−t/2 

2 ( )) = cos( 
√

3 t/2 − φ). 

.. .
Example 4. Suppose that the equation mx + bx + kx = 0 has characteristic 
roots a ± ib. Give the general real solution. 

Solution. In the previous examples we have established a pattern: Two 
basic real solutions are 

eat cos at (bt ) and e sin(bt) 

and the general real solution is 

x(t  c eat cos bt  c eat a) = 1 ( ) + 2 sin(bt) = Ae t cos(bt  φ). −

3 
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In words, the real part of the root is the coefficient of t in the exponential 
and the imaginary part is the angular pseudo-frequency in the trig func
tions. 

For completeness we will walk through the derivation of this. One ex
ponential solution is 

z t  e (a+ib( ) = )t
1 = eat(cos(bt) + i sin(bt)). 

The two basic solutions are the real and imaginary parts of z1. That is, 

eat cos(bt ) and e at sin(bt), 

as claimed. 
..

Example 5. Use the characteristic equation to solve x + 4x = 0.
 

Solution. You should have memorized the solution to this equation. We
 
will check the characteristic equation technique against this known solu
tion.
 
Characteristic equation: s2 + 4 = 0.
 
Roots: s2 = −4 ⇒ s = ±2i. 
Complex exponential solutions: z  e2it 

1 = , z  e−2it 
2 = . 

Basic real solutions: Re(z1) = cos(2t), Im(z1) = sin(2t). 
General real solution: 

x = c1 cos(2t) + c2 sin(2t) = A cos(2t − φ) 

(as expected). 

3. Repeated Roots 
.. .

Example 6. Solve x + 4x + 4x = 0. Then p(s 2 ) = (s + 2) has r = -2 
as a repeated root. The only exponential solution is e− 2t. Another solution, 
which is not a constant multiple of e−2t, is given by te−2t . We will not check 
this for now, you know how to do it: plug in and use the product rule. 

So the general solution is 

x −2t −2t (t) = c1e + c2te or x 2t(t) = e− (c1 + c2t). 

Example 7. (It’s all about the roots) 
Suppose the roots –with multiplicity– of a certain homogeneous constant 
coefficient linear equation are 

3, 4, 4, 4, 5 ± 2i, 5 ± 2i. 

4 
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Give the general real solution to the equation. What is the order of the 
equation? 

Solution. The basic solutions are 

e3t , e4t , te4t , t2e4t , e5t cos 5t (2t), e sin 2 5t 5t( t), te cos(2t), te sin(2t). 

(For each repeated root we added a multiple of t to the basic solution.) 
Using superposition, the general solution is 

x c 3t (t) = 1e + c2e4t 4t 2 4t+ c3te + c4t e
 

 c t 
5e5+ cos ( 2t) + c e5t
sin(2t) + c7te5t cos(2t 5t 

6 ) + c8te sin(2t).

There are 8 roots, so the order of the differential equation is 8. 

5
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