Part I Problems and Solutions

Problem 1: Find the Fourier series of the function $f(t)$ of period 2π which is given over the interval $-\pi<t \leq \pi$ by

$$
f(t)= \begin{cases}0, & -\pi<t \leq 0 \\ 1, & 0<t \leq \pi\end{cases}
$$

as in the same problem in the previous session - but this time use the known Fourier series for $s q(t)=$ the standard square wave.

Solution:

$$
s q(t)= \begin{cases}-1 & -\pi<t<0 \\ 1 & 0<t<\pi\end{cases}
$$

$f(t)=\frac{1}{2}(1+s q(t))$. Known Fourier series for $s q(t)$ is

$$
s q(t)=\frac{4}{\pi} \sum_{n \text { odd }} \frac{1}{n} \sin n t
$$

so

$$
f(t)=\frac{1}{2}(1+s q(t))=\frac{1}{2}+\frac{2}{\pi} \sum_{n \text { odd }} \frac{1}{n} \sin n t
$$

This is the same as was shown in the same problem in the previous session.
Problem 2: Find the Fourier series of the function $f(t)$ with period 2π given by $f(t)=|t|$ on $(-\pi, \pi)$ by integrating the Fourier series of the derivative $f^{\prime}(t)$.

Solution: Note that $f(t)=\left\{\begin{array}{ll}-t & -\pi<t \leq 0 \\ t & 0 \leq t<\pi\end{array}\right.$ so that

$$
f^{\prime}(t)=\left\{\begin{array}{ll}
-1 & -\pi<t<0 \\
1 & 0 \leq t<\pi
\end{array}=s q(t)\right.
$$

the standard square wave. Also note that $f(t)$ is an even function, so that

$$
f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)
$$

For $n=0, a_{0}=\frac{1}{4} \int_{-\pi}^{\pi} f(t) d t=\frac{1}{4} \int_{-\pi}^{\pi}|t| d t=\frac{2}{\pi} \int_{0}^{\pi} t d t=\left.\frac{2}{\pi} \frac{t^{2}}{2}\right|_{0} ^{\pi}=\pi$

For $n \geq 1$, we can integrate the Fourier series for $s q(t)$ term-by-term.
$n \geq 1$, odd: nth term of $s q(t)$ is $\frac{4}{\pi} \frac{1}{n} \sin n t \rightarrow \frac{4}{\pi n} \int \sin (n t) d t=-\frac{4}{\pi n} \frac{1}{n} \cos n t=-\frac{4}{\pi n^{2}} \cos n t \rightarrow$ $a_{n}=-\frac{4}{\pi n^{2}}$ for n odd.
We thus now have the Fourier series for $f(t)$:

$$
f(t)=\pi-\frac{4}{\pi} \sum_{n \text { odd }} \frac{1}{n^{2}} \cos (n t)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

