## General Case

It is actually just as easy to write out the formula for the Fourier series expansion of the steady-periodic solution $x_{\text {sp }}(t)$ to the general secondorder LTI DE $p(D) x=f(t)$ with $f(t)$ periodic as it was to work out the previous example - the only difference is that now we use letters instead of numbers. We will choose the letters used for the spring-mass-dashpot system, but clearly the derivation and formulas will work with any three parameters.
For simplicity we will take the case of $f(t)$ even (i.e. cosine series).
Problem: Solve $m \ddot{x}+b \dot{x}+k x=f(t)$, for the steady-periodic response $x_{\text {sp }}(t)$, where $f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \frac{\pi}{L} t\right)$

## Solution

Characteristic polynomial: $p(s)=m s^{2}+b s+k$.
Solving for the component pieces:

$$
m \ddot{x}_{n}+b \dot{x}_{n}+k x_{n}=\cos \left(n \frac{\pi}{L} t\right)
$$

For $n=0$ we get $x_{0, p}=\frac{1}{k}$.
For $n \geq 1$ :
Complex replacement: $\quad m \ddot{z}_{n}+b \dot{z}_{n}+k z_{n}=e^{i n \frac{\pi}{L} t}, \quad x_{n}=\operatorname{Re}\left(z_{n}\right)$
Exponential Response formula: $z_{n, p}(t)=\frac{e^{i n \frac{\pi}{L} t}}{p\left(i n \frac{\pi}{L}\right)}$.
Polar coords: $p\left(i n \frac{\pi}{L}\right)=\left(k-m\left(n \frac{\pi}{L}\right)^{2}\right)+i b n \frac{\pi}{L}=\left|p\left(i n \frac{\pi}{L}\right)\right| e^{i \phi_{n}}$,
where $\left|p\left(i n \frac{\pi}{L}\right)\right|=\sqrt{\left(k-m\left(n \frac{\pi}{L}\right)^{2}\right)^{2}+b^{2}\left(n \frac{\pi}{L}\right)^{2}}$ and
$\phi_{n}=\operatorname{Arg}\left(p\left(i n \frac{\pi}{L}\right)\right)=\tan ^{-1}\left(\frac{b n \frac{\pi}{L}}{k-m\left(n \frac{\pi}{L}\right)^{2}}\right) \quad$ (phase lag).
Thus, $z_{n, p}(t)=g_{n} e^{i\left(n \frac{\pi}{L} t-\phi_{n}\right)}, \quad$ with $g_{n}=\frac{1}{\left|p\left(i n \frac{\pi}{L}\right)\right|} \quad$ (gain).
Taking the real part of $x_{n, p}$ we get $x_{n, p}(t)=g_{n} \cos \left(n \frac{\pi}{L} t-\phi_{n}\right)$.
Now using superposition and putting back in the coefficients $a_{n}$ we get:

$$
x_{\mathrm{sp}}(t)=\frac{a_{0}}{2} x_{0, p}+\sum_{n=1}^{\infty} a_{n} x_{n, p}(t)=\frac{a_{0}}{2 k}+\sum_{n=1}^{\infty} g_{n} a_{n} \cos \left(n \frac{\pi}{L} t-\phi_{n}\right)
$$

This is the general formula for the steady periodic response of a secondorder LTI DE to an even periodic driver $f(t)$

MIT OpenCourseWare
http://ocw.mit.edu

### 18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

