
The Existence and Uniqueness Theorem for Linear Systems 

For simplicity, we stick with n = 2, but the results here are true for all 
n. There are two questions about the following general linear system that
we need to consider.

x� = a(t)x + b(t)y 
; in matrix form,

� 
x 
�� 

= 
� 

a(t) b(t) 
�� 

x 
� 

y� = c(t)x + d(t)y y c(t) d(t) y 
(1) 

The first is from the previous section: to show that all solutions are of the 
form 

x = c1x1 + x2x2, 

where the xi form a fundamental set, that is, no xi is a constant multiple of 
the other). (The fact that we can write down all solutions to a linear system 
in this way is one of the main reasons why such systems are so important.) 

An even more basic question for the system (1) is: how do we know that 
it has two linearly independent solutions? For systems with a constant co
efficient matrix A, we showed in the previous chapters how to solve them 
explicitly to get two independent solutions. But the general non-constant 
linear system (1) does not have solutions given by explicit formulas or pro
cedures. 

The answers to these questions are based on following theorem. 

Theorem 2 Existence and uniqueness theorem for linear systems. 

If the entries of the square matrix A(t) are continuous on an open 
interval I containing t0, then the initial value problem 

x� = A(t) x, x(t0) = x0 (2) 

has one and only one solution x(t) on the interval I. 

The proof is difficult and we shall not attempt it. More important is to see 
how it is used. The following three theorems answer the questions posed for 
the 2 × 2 system (1). They are true for n > 2 as well, and the proofs are 
analogous. 

In the following theorems, we assume the entries of A(t) are continuous on 
an open interval I. Here the conclusions are valid on the interval I, for 
example, I could be the whole t-axis. 

Theorem 2A Linear independence theorem. 
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Let x1(t) and x2(t) be two solutions to (1) on the interval I, such that at 
some point t0 in I, the vectors x1(t0) and x2(t0) are linearly independent. 
Then 

a) the solutions x1(t) and x2(t) are linearly independent on I, and 

b) the vectors x1(t1) and x2(t1) are linearly independent at every point 
t1 of I. 

Proof. a) By contradiction. If they were dependent on I, one would be a 
constant multiple of the other, say x2(t) = c1x1(t). Then x2(t0) = c1x1(t0), 
showing them dependent at t0. � 

b) By contradiction. If there were a point t1 on I where they were de
pendent, say x2(t1) = c1x1(t1), then x2(t) and c1x1(t) would be solutions to 
(1) which agreed at t1. Hence, by the uniqueness statement in Theorem 2, 
x2(t) = c1x1(t) on all of I, showing them linearly dependent on I. � 

Theorem 2B General solution theorem. 

a) The system (1) has two linearly independent solutions. 

b) If x1(t) and x2(t) are any two linearly independent solutions, then 
every solution x can be written in the form (3), for some choice of c1 and 
c2: 

x = c1x1 + c2x2. (3) 

Proof. Choose a point t = t0 in the interval I. 

a) According to Theorem 2, there are two solutions x1, x2 to (1), satis
fying respectively the initial conditions 

x1(t0) = i, x2(t0) = j , (4) 

where i and j are the usual unit vectors in the xy-plane. Since the two solu
tions are linearly independent when t = t0, they are linearly independent 
on I, by Theorem 5.2A. 

b) Let u(t) be a solution to (1) on I. Since x1 and x2 are independent 
at t0 by Theorem 2, using the parallelogram law of addition we can find 
constants c1

� and c2
� such that 

u(t0) = c1
� x1(t0) + c2

� x2(t0). (5) 

The vector equation (5) shows that the solutions u(t) and c1
� x1(t) + c2

� x2(t) 
agree at t0. Therefore by the uniqueness statement in Theorem 2, they are 
equal on all of I; that is, 

u(t) = c�1x1(t) + c2
� x2(t) on I. 
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