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1 Problems from the book by Sa� and Snider.

1.1 Problem 04 in section 3.2.

Let us write z = x + iy. Then Log(ez) = Log(exeiy) = ln(ex) + Arg(exeiy) = x + i(y + 2k0�) where

k0 is an integer chosen such that �� < y + 2k0� � �. Thus, we see that Log ez = z if and only if

k0 = 0, which happens if and only if �� < y � �.

1.2 Problem 07 in section 3.2.

Let us write z in polar form: z = rei�. Then the polar form of the Cauchy-Riemann equations is

@u

@r
=

1

r

@v

@�
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@v

@r
= �1

r

@u

@�
:

Writing log z = ln(r) + i(� + 2k�), we have u = ln(r) and v = � + 2k�. Hence,
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r
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= 0 :

So we see that the Cauchy-Riemann equations are indeed satis�ed, and thus log(z) is analytic.

To �nd its derivative, consider approaching the limit radially, with angle � = �0 �xed. Then

d

dz
log(z) =

d

d(ei�0r)
(ln(r) + i(� + 2k�)) =

1

ei�0
d

dr
(ln(r) + i(� + 2k�)) =

1

ei�0
1

r
=

1

z
:

1.3 Problem 16 in section 3.2.

Write z = �ei�, where �� < � � �. Then w = Log(z) = ln �+ i�. So the level curves for the real

part of Log(z) are curves with � =constant, i.e.: circles centered at the origin. The level curves

for the imaginary part of Log(z) are curves with constant argument �, i.e. rays starting from the

origin. See �gure 1.3.1.

To see that the level curves are orthogonal at each point, we compute

r(Re(w)) � r(Im(w)) = (1=�)e� � (1=�)e� = 0 :

Alternatively: the level curves for the real an imaginary parts of Log(z) are the same as the

coordinate lines for the (orthogonal and curvilinear) polar coordinate system.
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Figure 1.3.1: Level curves for the real and imaginary parts of Log(z).

1.4 Problem 09 in section 3.3.

Let z = cos(w) =
1

2
(eiw + e�iw) =

1

2
(�+ ��1), where � = eiw. Multiplying both sides by 2� and

then using the quadratic formula to solve for �, we �nd: eiw = � = z + (z2 � 1)1=2. Taking logs of

both sides in this last equation and dividing by i, we �nd that

w = cos�1(z) = �i log
�
z + (z2 � 1)1=2

�
: (1.4.1)

Now we di�erentiate this expression to �nd

d

dz
cos�1(z) = �i 1

z + (z2 � 1)1=2

 
1 +

z

(z2 � 1)1=2

!
=

�i
(z2 � 1)1=2

: (1.4.2)

Remark 1.4.1 We could now argue that, in the last expression in equation (1.4.2)

i(z2 � 1)1=2 = (1� z2)1=2 ; (1.4.3)

and thus write
d

dz
cos�1(z) =

1

(1� z2)1=2
: (1.4.4)
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We could equally make the argument that

i(z2 � 1)1=2 = �(1� z2)1=2 ; (1.4.5)

and so conclude that
d

dz
cos�1(z) =

�1
(1� z2)1=2

; (1.4.6)

which is formula (3.3.11) (page 92) in the book. However, now we seem to have arrived at two

(apparently) di�erent answers | equations (1.4.4) and (1.4.6) | for the same question! So what

is going on here?

The answer to this conundrum lies in the multiple valued nature of the functions involved, and it

also teaches us that we have to be very careful when dealing with multiple valued functions:

Both (1.4.3) and (1.4.5) are true only in the multiple valued sense, meaning that the set of values

that the right hand sides can take is equal to the set of values that the left hand sides (respectively)

can take. Since the values for square roots come in pairs with opposite signs, it is quite clear that

these two equations are actually the same thing. Equations (1.4.4) and (1.4.6) are valid in precisely

the same way. However, equation (1.4.2) is valid in a somewhat stronger sense, as we

explain next.

Consider some arbitrary point z0 6= �1 in the complex plane. In some neighborhood of it we can

then de�ne (z2 � 1)1=2 as a single valued function (i.e.: we pick a branch). Just so we do not get

confused in the argument that follows, we will give give a name to this branch of (z2 � 1)1=2 | say:

G(z). Thus G(z) is now some nice, single valued, analytic function de�ned in some neighborhood

of z0, which happens to have the property that G2 = z2 � 1.

Let us also choose a branch for the logarithm, de�ned in a neighborhood of z0 +G(z0). Then we

can write (using equation (1.4.1)):

w = arCoS(z) = �iLoG(z +G) ; (1.4.7)

where LoG is the name of the branch for the log we just selected and arCoS is the name for the branch

of cos�1 that equation (1.4.7) de�nes. The important point that distinguishes equation (1.4.2) from

equations (1.4.4) and (1.4.6) arises now, for we can substitute into it the various branches we have

selected to obtain a true equation, valid in a single valued sense. That is:

d

dz
arCoS(z) =

�i
G(z)

: (1.4.8)
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This is easy to see, since all the operations in (1.4.2) are consistent with the de�nitions of the various

branches above. But we cannot do this with either (1.4.4) or (1.4.6), simply because these

formulas involve yet another multiple valued function (namely: (1� z2)1=2) for which no branch

has been selected.

So, short and sweet: once branches are de�ned for (1.4.1), equation (1.4.2) can be used to

calculate the derivative, without any longer having to worry about possible multiple values.

Remark 1.4.2 We can also write (this is equivalent to (1.4.1), as can be seen using (1.4.5))

w = cos�1(z) = �i log
�
z + i(1� z2)1=2

�
: (1.4.9)

Then equation (1.4.6) has the same relationship to this formula that (1.4.2) has to (1.4.1). That

is: once branches are de�ned for (1.4.9), equation (1.4.6) can be used to calculate the derivative,

without any longer having to worry about possible multiple values.

1.5 Problem 12 in section 3.3.

Write z = tanw = �i(eiw � e�iw)=(eiw + e�iw) and solve for w. First multiply both sides of the

equation by ieiw(eiw + e�iw) to �nd iz(e2iw + 1) = e2iw � 1. Hence: e2iw = (1 + iz)=(1� iz). Now

take the log of both sides and divide by 2i to get:

w = tan�1(z) =
1

2i
log

�
1 + iz

1� iz

�
=
i

2
log

�
i + z

i� z

�
:

We di�erentiate now this expression using the chain rule:

d

dz
tan�1 z =

i

2

�
i� z

i+ z

� 
(i� z)� (i + z)(�1)

(i� z)2

!
=

1

1 + z2
:

1.6 Problem 08 in section 4.1.

The contour � can be split naturally into two pieces, each one of which is easy to parametrize. Let

us �rst parametrize these two curves separately and then patch them together in a second step.

The �rst curve can be parametrized as: z(t) = (�2 + 2i) + (1� 2i)t, for 0 � t � 1. The second

curve is described by: z(t) = exp(i�(1� t)), for 0 � t � 1. Patching these together, we have

� : z(t) =

8><
>:

(�2 + 2i) + (2� 4i)t ; 0 � t � 1
2
;

e2i�(1�t) ; 1
2
� t � 1 :
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We can now also parametrize the contour with the opposite orientation:

�� : z(t) =

8><
>:
e2i�(1+t) ; �1 � t � �1

2
;

(�2 + 2i)� (2� 4i)t ; �1
2
� t � 0 :

1.7 Problem 14 in section 4.1.

Let

I �
Z d

c

�����dz2(s)ds

����� =
Z d

c

�����dz1(�(s))ds

����� :

Now let t = �(s) so that dt =
d�

ds
ds =

�����d�ds
����� ds, since (by assumption) d�=ds > 0. Then:

I =
Z d

c

�����dz1(t)dt

d�

ds

����� ds =
Z t=�(d)

t=�(c)

�����dz1dt
����� dt =

Z b

a

�����dz1dt
����� dt :
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2 Other problems.

2.1 Problem 3.1 in 1999.

Statement: Consider the complex potential for a uid given by w = Az3, where A > 0 is a real

number:

(i) Find the potential �, the stream-function  and the velocity �eld (u; v).

(ii) Sketch the streamlines and the velocity �eld in the complex plane.

(iii) Can you use this to �nd an incompressible, irrotational ow in a wedge (for some angle)?

What is the angle of the wedge you can do with this solution?

Can you think of a way of getting solutions for other angles?

Solution: Let us set A = 1 for convenience (you should be able to see that none of the arguments

below will change in any essential way if the size of A is changed).

� i) Let = x + iy. Then w = z3 = (x+ iy)3 = (x3 � 3xy2) + i(3x2y � y3). Thus we can take:

�(x; y) = Re(w) = x3 � 3xy2 (potential),

 (x; y) = Im(w) = 3x2y � y3 (stream function),

u = r� = 3(x2 � y2) i� 6xy j (u = (u; v) = velocity �eld) :

Notice that u� iv = 3z2 = derivative of the complex potential w = 3z2. This is always true;

can you see why?

� ii) See �gure 2.1.1.

� iii) We must impose the requirement that no uid can escape across the boundary, that is

(on the boundary): u � n = r� � n = 0, where n is the normal vector to the boundary. Since

r� � r = 0 everywhere, the boundary must be a stream-line:  = constant. Then

r is orthogonal to the boundary (on the boundary).

Now clearly, y = 0 is one possible boundary, since  (x; 0) = 0. In order to obtain a wedge, we

need another boundary of the form y = �x, for some constant �. Since  (x; �x) = �(3��2)x3,
for  to be constant along the line (i.e. independent of x), we need � = 0; �p3. The case

� = 0 gives us the boundary we already have. The case � =
p
3 gives us a boundary at an
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angle � = �=3 and the case � = �p3 gives us a boundary at an angle � = ��=3. Thus we

can use the complex potential w = z3 to describe an incompressible, irrotational,

two dimensional ow in a wedge of angle �=3. See �gure 2.1.1.
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Figure 2.1.1: Stream lines for the ow given by w = z3. The ow is along the stream lines, in the

direction indicated by the arrows. The magnitude of the ow speed is 3r2, where r = jzj.

In order to obtain ow in wedges of di�erent angles, consider w = z� = ��ei��. Then the stream

function is given by  = Im(w) = �� sin(��) and two level curves where  = constant are clearly

given by � = 0 and � = �=� (since  vanishes on these curves).

THE END.


