Answers to Problem Set Number 5 for 18.04. MIT (Fall 1999)

Rodolfo R. Rosales* Boris Schlittgen ${ }^{\dagger}$ Zhaohui Zhang \ddagger

November 4, 1999

Contents

1 Problems from the book by Saff and Snider. 2
1.1 Problem 04 in section 4.4. 2
1.2 Problem 07 in section 4.4. 2
1.3 Problem 10 in section 4.4. 3
1.4 Problem 18 in section 4.4. 4
1.5 Problem 06 in section 4.5. 5
1.6 Problem 08 in section 4.5. 5
1.7 Problem 14 in section 4.5. 6
1.8 Problem 06 in section 4.6. 7
1.9 Problem 14 in section 4.6. 7
1.10 Problem 24 in section 4.6. 8
List of Figures
1.5.1 Deformation of contour to calculate an integral. 6

[^0]
1 Problems from the book by Saff and Snider.

1.1 Problem 04 in section 4.4.

Let us first of all parametrise the contour Γ_{0} :

$$
\Gamma_{0}: z(t)= \begin{cases}e^{i t}, & 0 \leq t \leq 2 \pi \\ e^{i(4 \pi-t)}, & 2 \pi \leq t \leq 4 \pi\end{cases}
$$

We want to deform this contour continuously to the contour $\Gamma_{1}: z(t)=1,0 \leq t \leq 4 \pi$. This is achieved by the following intermediate set of contours,

$$
\Gamma_{s}: z(s, t)= \begin{cases}e^{i(1-s) t}, & 0 \leq t \leq 2 \pi \\ e^{i(1-s)(4 \pi-t)}, & 2 \pi \leq t \leq 4 \pi\end{cases}
$$

where $0 \leq s \leq 1$.

To check that the conclusion of the Deformation Invariance Theorem holds for this example, let us split the contour Γ_{0} into two parts: Let γ_{a} be the part of the contour that has counterclockwise direction and let γ_{b} be the part of the contour that has clockwise direction. Notice that $\gamma_{b}=-\gamma_{a}$, so that (by equation (3) of page 115 in the book):

$$
\int_{\Gamma_{0}} f(z) d z=\int_{\gamma_{a}} f(z) d z+\int_{\gamma_{b}} f(z) d z=\int_{\gamma_{a}} f(z) d z-\int_{\gamma_{a}} f(z) d z=0 .
$$

For the integral along Γ_{1}, we can use theorem 5 of section 4.2:

$$
\left|\int_{\Gamma_{1}} f(z) d z\right| \leq \max _{z \in \gamma_{1}}|f(z)| \times \text { length }\left(\Gamma_{1}\right)=|f(1)| \times 0=0 .
$$

Thus both integrals (along Γ_{0} and Γ_{1}) vanish, and therefore are equal.

1.2 Problem 07 in section 4.4.

Part (a)
Since $f(z)=u(x, y)+i v(x, y)$ is analytic, we know that u and v satisfy the Cauchy-Riemann equations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \text { and } \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

The vector field corresponding to $\bar{f}=u-i v$ is $\mathbf{V}=(u,-v)$, that is: $V_{1}=u$ and $V_{2}=-v$. Thus,

$$
\begin{aligned}
& \frac{\partial V_{1}}{\partial y}=\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=\frac{\partial V_{2}}{\partial x} \\
& \frac{\partial V_{1}}{\partial x}=\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=-\frac{\partial V_{2}}{\partial y}
\end{aligned}
$$

From the first line here we see that the vector field is irrotational and from the second we see that it is also solenoidal.

Part (b)

Now suppose that $\mathbf{V}=\left(V_{1}, V_{2}\right)$ is a continuously differentiable, irrotational, solenoidal vector field. Thus

$$
\frac{\partial V_{1}}{\partial y}=\frac{\partial V_{2}}{\partial x} \quad \text { and } \quad \frac{\partial V_{1}}{\partial x}=-\frac{\partial V_{2}}{\partial y} .
$$

If we now let $f=V_{1}-i V_{2}$, we see that the real and imaginary parts of f satisfy the Cauchy-Riemann equations and are continuously differentiable. By Theorem 5 of section 2.4, f is differentiable and hence analytic.

1.3 Problem 10 in section 4.4.

Consider the contour integral (for the choices of f below)

$$
\begin{equation*}
\oint_{|z|=2} f(z) d z \tag{1.3.1}
\end{equation*}
$$

Part (a)
$f(z)=\frac{z}{z^{2}+25}=\frac{z}{(z+25 i)(z-25 i)}$. This function is analytic everywhere, except at the values $z= \pm 25 i$. Since both of these points lie outside the circle $|z|=2$, the integral (1.3.1) vanishes by Cauchy's Theorem.

Part (b)
$f(z)=e^{-z}(2 z+1)$. This function is analytic everywhere, so that the integral (1.3.1) vanishes by Cauchy's Theorem.

Part (c)
$f(z)=\frac{\cos z}{(z-3+i)(z-3-i)}$. This function is analytic everywhere, except at the values $z=3 \pm i$.
Since both of these points lie outside of the circle, the integral (1.3.1) vanishes by Cauchy's Theorem.

Part (d)
$f(z)=\log (z+3)$. This function is analytic everywhere, except when $\operatorname{Arg}(z+3)=\pi$, i.e. except on the real axis with $\operatorname{Re}(z)<-3$. So it is analytic inside the circle and the integral (1.3.1) vanishes by Cauchy's Theorem.

Part (e)
$f(z)=\sec (z / 2)=1 / \cos (z / 2)$. This function is analytic everywhere, except when the denominator vanishes, which occurs when $z=\pi+2 k \pi$ for k an integer. Since $-\pi<2$ and $\pi>2$, this function is analytic inside the circle and the integral (1.3.1) vanishes by Cauchy's Theorem.

1.4 Problem 18 in section 4.4.

Consider the contour integral

$$
I=\oint_{|z|=2} \frac{d z}{z^{2}(z-1)^{3}} .
$$

We show now that this integral vanishes.

Step (a)

The integrand is a function analytic everywhere, except when $z=0$ or $z=1$. We can define the domain D to be the complex plane without the interior of the circle $|z|=1.5$ for example. (Note that this domain is not simply connected, but it doesn't need to be for this argument.) The domain D contains the circles $|z|=2$ and $|z|=R$ for any $R>2$, and these circles can be continuously deformed into each other (by continuously varying the radius). We can therefore use theorem 8 of section 4.4, to conclude that $I=I(R)$ for every $R>2$.

Step (b)

On the contour, we have $z=R \cos \theta+i R \sin \theta$. Thus $|z|=R$ and

$$
|z-1|=\sqrt{(R \cos \theta-1)^{2}+R^{2} \sin ^{2} \theta}=\sqrt{R^{2}+1-2 R \cos \theta} \geq \sqrt{R^{2}+1-2 R}=R-1
$$

Thus (on the contour) we have $\left|\frac{1}{z^{2}(z-1)^{3}}\right| \leq \frac{1}{R^{2}(R-1)^{3}}$ and by theorem 5 of section 4.2,

$$
\begin{equation*}
|I(R)| \leq \frac{1}{R^{2}(R-1)^{3}} \times(\text { length of path })=\frac{2 \pi}{R(R-1)^{3}} \tag{1.4.1}
\end{equation*}
$$

Step (c)
From (1.4.1) it follows that $\lim _{R \rightarrow \infty} I(R)=0$.
Step (d)
We know that $I=I(R)$ for all $R>2$. Now, suppose $I \neq 0$, say $|I|=\epsilon>0$. But (from part (c)) we know that there is an $R_{0}>2$, such that $|I(R)|<\epsilon$ for all $R \geq R_{0}$. But then, for $R \geq R_{0}$ we have $\epsilon=|I|=|I(R)|<\epsilon$, which is a contradiction. Hence $I=0$.

1.5 Problem 06 in section 4.5.

Consider the integral

$$
\begin{equation*}
I=\int_{\Gamma} \frac{e^{i z}}{\left(z^{2}+1\right)^{2}} d z=\int_{\Gamma} \frac{e^{i z}}{(z+i)^{2}(z-i)^{2}} d z \tag{1.5.1}
\end{equation*}
$$

where Γ is the circle $|z|=3$ traversed once in the counterclockwise direction. Since the integrand is analytic everywhere, except at $z= \pm i$, we can use the deformation invariance theorem (theorem 8 of section 4.4) and apply it to the domain D, where D is the complex plane without the points $\pm i$. We deform the contour as indicated in figure 1.5.1, to obtain

$$
\begin{aligned}
I & =\int_{\gamma_{1}} \frac{e^{i z}}{\left(z^{2}+1\right)^{2}} d z+\int_{\gamma_{2}} \frac{e^{i z}}{\left(z^{2}+1\right)^{2}} d z \\
& =2 \pi i\left[\left.\frac{d}{d z}\left(\frac{e^{i z}}{(z+i)^{2}}\right)\right|_{z=i}+\left.\frac{d}{d z}\left(\frac{e^{i z}}{(z-i)^{2}}\right)\right|_{z=-i}\right] \\
& =\frac{\pi}{e}
\end{aligned}
$$

where (in the second step) we used theorem 19 of section 4.5.

1.6 Problem 08 in section 4.5.

Consider the circle $\left|z-z_{0}\right|=r$. Let us parametrise it as follows: $z(\theta)=z_{0}+r e^{i \theta}, 0 \leq \theta \leq 2 \pi$. Then Cauchy's Integral Formula tells us that if f is analytic inside and on the circle, then

$$
\begin{aligned}
f\left(z_{0}\right) & =\frac{1}{2 \pi i} \oint_{\left|z-z_{0}\right|=r} \frac{f(z)}{z-z_{0}} d z \\
& =\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i \theta}\right)}{z_{0}+r e^{i \theta}-z_{0}} r i e^{i \theta} d \theta
\end{aligned}
$$

Figure 1.5.1: Deformation of the contour Γ in (1.5.1).

$$
=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) d \theta
$$

where we have used the fact that $\frac{d z}{d \theta}=r i e^{i \theta} d \theta$. More generally, using theorem 19 of section 4.5:

$$
\begin{aligned}
f^{(n)}(z) & =\frac{n!}{2 \pi i} \oint_{\left|z-z_{0}\right|=r} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z \\
& =\frac{n!}{2 \pi i} \int_{0}^{2 \pi} \frac{f\left(z_{0}+r e^{i \theta}\right)}{r^{n+1} e^{i(n+1) \theta}} r i e^{i \theta} d \theta \\
& =\frac{n!}{2 \pi r^{n}} \int_{0}^{2 \pi} f\left(z_{0}+r e^{i \theta}\right) e^{-i n \theta} d \theta .
\end{aligned}
$$

1.7 Problem 14 in section 4.5.

Consider the function

$$
G(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\cos \zeta}{\zeta-z} d \zeta,
$$

where Γ is a simple closed positively oriented contour that passes through the point $2+3 i$. The function $\cos (\zeta)$ is is analytic everywhere, so that $\frac{\cos (\zeta)}{(\zeta-z)}$ is analytic everywhere, except when $\zeta=z$.

- If z lies outside of Γ, then from Cauchy's Theorem $G(z)=0$, since the integrand is analytic inside the contour. Thus
$\lim _{z \rightarrow 2+3 i} G(z)=0$ when z approaches $2+3 i$ from outside Γ.
- If z lies inside Γ, we can use Cauchy's Integral Formula to evaluate the integral. Then $G(z)=\cos (z)$. Thus

$$
\lim _{z \rightarrow 2+3 i} G(z)=\cos (2+3 i) \text { when } z \text { approaches } 2+3 i \text { from inside } \Gamma \text {. }
$$

1.8 Problem 06 in section 4.6.

Let $f(z)$ be an entire function such that $f^{(5)}(z)$ is bounded in the whole plane. Then f is a polynomial of degree at most 5 .

Since f is entire, it is infinitely many times differentiable, and each of its derivatives is also entire. In particular, $f^{(5)}$ is entire and (by assumption) it is bounded in the whole plane. By theorem 21 of section 4.6 (Liouville's Theorem), we conclude that $f^{(5)}$ is a constant function. Integrating $f^{(5)}$ five times we see that f must be a polynomial of degree at most 5.

1.9 Problem 14 in section 4.6.

Minimum Modulus Principle: Let f be analytic in a bounded domain D and continuous up to and including its boundary. Then, if f is non-zero in D, the modulus $|f(z)|$ attains its minimum value on the boundary of D.

To show this we will apply the maximum modulus principle to the function $g(z)=1 / f(z)$. However, we must be careful, since the maximum modulus principle requires that the function it is applied to be analytic in the domain D and continuous up to and including its boundary. It should be clear that the only way $g(z)$ can fail to satisfy these conditions is if $f(z)$ vanishes somewhere (which, by hypothesis, can only happen on the boundary). Thus we distinguish two cases:

- i) $f\left(z_{0}\right)=0$ at some point z_{0} on the boundary. Then, since $f(z) \neq 0$ in $D,|f(z)|>0$ in D and (by continuity) $|f(z)| \geq 0$ on the boundary of D. Since $\left|f\left(z_{0}\right)\right|=0,|f(z)|$ does indeed attain its minimum on the boundary.
- ii) On the other hand, assume that $f(z) \neq 0$ in D and on the boundary. Then $g=g(z)$ satisfies the conditions for the maximum modulus principle, so that $|g(z)|$ attains its maximum on the boundary. But a maximum of $|g(z)|$ is a minimum of $|f(z)|$. Thus, again, $|f(z)|$ attains its minimum on the boundary.

Counterexample 1: Consider $f(z)=z$ on the unit disk $|z|<1$, which satisfies the conditions for the Minimum Modulus Principle, except that $f(0)=0$. In this case $|f(z)|=1$ on the boundary of the domain (the unit circle), while the minimum of $|f|$ is clearly 0 . Thus, if the condition that f be non-zero on D fails, the Minimum Modulus Principle need not apply.

Counterexample 2: Consider $f(z)=e^{-z}$ on the right hand side of the complex plane $\operatorname{Re}(z)>0$, which satisfies the conditions for the Minimum Modulus Principle, except that the domain is not bounded. In this case $|f(z)|=1$ on the boundary of the domain (the imaginary axis), while the minimum of $|f|$ is clearly 0 (look at the values of $|f(z)|$ on the positive real axis). Thus, if the condition that the domain be bounded fails, the Minimum Modulus Principle need not apply.

1.10 Problem 24 in section 4.6.

Here we show that if P is a polynomial that has no zeros on a simple positively oriented contour Γ, then

$$
\begin{equation*}
I=\frac{1}{2 \pi i} \oint_{\Gamma} \frac{P^{\prime}(z)}{P(z)} d z \tag{1.10.1}
\end{equation*}
$$

gives the number of zeros (counting multiplicity) that P has inside the contour Γ.
We can write $P(z)=c \prod_{k=1}^{n}\left(z-z_{k}\right)$, where the z_{k} 's are the zeros of $P(z)$ (occurring with their multiplicities) and c is some constant. Then, using the product rule to differentiate $P(z)$, we find

$$
\frac{d P}{d z}=c \sum_{\ell=1}^{n} \prod_{k=1 \& k \neq \ell}^{n}\left(z-z_{k}\right)
$$

so that

$$
\frac{P^{\prime}(z)}{P(z)}=\sum_{\ell=1}^{n} \frac{1}{z-z_{\ell}}
$$

We recall now that

$$
\frac{1}{2 \pi i} \oint_{\Gamma} \frac{1}{z-z_{\ell}} d z= \begin{cases}1 & \text { if } z_{\ell} \text { is inside } \Gamma \\ 0 & \text { otherwise }\end{cases}
$$

so that

$$
\frac{1}{2 \pi i} \oint_{\Gamma} \frac{P^{\prime}(z)}{P(z)} d z=\sum_{\ell=1}^{n}\left(\frac{1}{2 \pi i} \oint_{\Gamma} \frac{1}{z-z_{\ell}} d z\right)=\text { No. of zeros of } \mathrm{P} \text { inside } \Gamma \text {, counting multiplicities. }
$$

[^0]: *MIT, Department of Mathematics, room 2-337, Cambridge, MA 02139.
 ${ }^{\dagger}$ MIT, Department of Mathematics, room 2-490, Cambridge, MA 02139.
 \ddagger MIT, Department of Mathematics, room 2-229, Cambridge, MA 02139.

