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1 Problems from the book by Sa� and Snider.

1.1 Problem 04 in section 4.7.

When thermal equilibrium is reached in a bounded closed region, the steady state temperature can

be described by a real-valued function T = T (x; y), which is a solution of Laplace's equation

0 = �T (x; y) =
@2T

@x2
+

@2T

@y2
;

Thus T is a harmonic function (see Section 2.6 of the book for more details). A maximum of T

corresponds to the \hottest spot" and a minimum corresponds to the \coldest spot". The maximum-

minimum principle for harmonic functions says that the maximum and minimum can not occur in

the interior, which makes perfect sense in this physical context: the hottest spot cannot occur in

the interior at equilibrium because heat would ow away from it to the surrounding area and it

would cool down; similarly, the coldest spot cannot occur in the interior either since heat would

ow into it from the surrounding area to warm it up.

1.2 Problem 05 in section 4.7.

Here we will �nd an unbounded domain and two harmonic functions, which agree on the boundary

but are not identical in the domain. They will then be two di�erent solutions to the same Dirichlet

problem. This will show that the solution to the Dirichlet problem on an unbounded

domain need not be unique (unless extra1 conditions on the problem are imposed).

Let us choose as the domain the right-half plane: Re(z) = x > 0, whose boundary is the imaginary

axis: Re(z) = x = 0. Let us now consider the Dirichlet problem on this domain with vanishing

values for the solution (a harmonic function) on the boundary. That, is, the problem is:

�� = 0 on x > 0 ; with �(0; y) = 0 for all y :

An obvious solution to this problem is the zero function �1(x; y) = 0. If the solutions to the Dirichlet

problem were unique in this case, all the harmonic functions vanishing on the y-axis would vanish

on the whole right-half plane. This is certainly not the case. Some simple counter-examples are

1Typically, Dirichlet problems on in�nite domains arising in applications will have such extra restrictions.
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� �2(x; y) = sin(x) exp(�y) (harmonic, since it is the real part of exp(iz)).

� �3(x; y) = 2xy (harmonic, since it is the imaginary part of z2).

Notice that, if we require the solution to be bounded, these counter-examples are excluded.

1.3 Problem 11 in section 4.7.

To do this problem we use the Mean Value Property for harmonic functions (done in the lectures).

The temperature at the center of the disk must be the average of the temperature on the rim. Since

on the rim T � 0, T � 6, T � 4 and T � 2 on each of four equal sectors (spanning a
1

2
� angle each),

it follows that

T (0; 0) = 3 :

1.4 Problem 2b in section 5.1.

We use the ratio test to check the convergence of the series

1X
k=1

ck =
1X
k=1

(3 + i)k

k!
:

We have that

lim
k!1

jck+1
ck
j = lim

k!1

j3 + ij
k + 1

= lim
k!1

p
10

k + 1
= 0 < 1 :

Hence the series converges.

1.5 Problem 07 in section 5.1.

Here we will examine several series and determine if they converge or diverge. We will use two

tests for convergence. The �rst test is sometimes called the n-th term test and it is a necessary

condition for convergence. Namely:

If an in�nite sum
1X
n=1

an converges, then an ! 0 as n!1.
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Notice that, if this test is \passed", the series may still diverge (as the harmonic series, with an =
1

n
,

shows). It is only when janj 6! 0 as n!1 that this test provides a de�nite answer.

The second test is the ratio test. The ratio test gives a de�nite answer when the ratio is strictly

less than 1 (convergence) or strictly greater than 1 (divergence), but provides no information when

the ratio is 1. In this last case one must use other tests, such as (for example) the �rst test above.

Notice that, if the ratio test gives 1 for the ratio and the �rst test \passes", the issue of convergence

will remain undecided.

a) Series with: an = (
1 + 2i

1� i
)n. The ratio test yields:

lim
n!1

����an+1an

���� = lim
n!1

����1 + 2i

1� i

���� =
s
5

2
> 1 :

Therefore this series diverges. The n-th term test also fails, since

janj =
0
@
s
5

2

1
A
n

!1

as n!1.

b) Series with: an =
1

n2 3n
. The ratio test yields:

lim
n!1

����an+1an

���� = lim
n!1

1

3
(

n

n+ 1
)2 =

1

3
< 1 :

Therefore this series converges.

c) Series with: an =
nin

2n+ 1
. We use the n-th term test:

lim
n!1

janj = lim
n!1

n

2n+ 1
=

1

2
6= 0 :

Therefore the series diverges. Notice that in this case the ratio test is not useful, since:

lim
n!1

����an+1an

���� = lim
n!1

(2n+ 1)

(2n+ 3)

(n+ 1)

n
= 1 :

d) Series with: an =
n!

5n
. The ratio test yields:

lim
n!1

����an+1an

���� = lim
n!1

n+ 1

5
=1 :

Therefore the series diverges.
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e) Series with: an =
(�1)nn3
(1 + i)n

. The ratio test yields:

lim
n!1

����an+1an

���� = lim
n!1

1

j1 + ij
�
n+ 1

n

�3
=

1p
2
< 1 :

Therefore the series converges.

f) Series an = in � 1

n2
. We use the n-th term test:

lim
n!1

janj = 1 > 0 :

Therefore the series diverges. Again, in this case the ratio test is not useful (as it yields a

ratio of one).

1.6 Problem 13 in section 5.1.

Here we show that the series
1X
j=1

j�p converges for p > 1.

The sequence
1

jp
is non-negative, thus to show that its sum is convergent it is enough

to show that it is bounded. Consider then the integral:

AN =

Z N

1

1

xp
dx =

N�1X
j=1

Z j+1

j

1

xp
dx :

The integrand
1

xp
is decreasing when p > 0, so that

1

xp
>

1

(j + 1)p

for j � x � j + 1. Applying this inequality to the integral in each unit interval [j; j + 1] above, we

get:

AN =
N�1X
j=1

Z j+1

j

1

xp
dx >

NX
j=2

1

jp
:

On the other hand, AN can be computed directly by integration:

AN =
1� p

xp�1

����
N

1

= (p� 1)(1� 1

Np�1
) < p� 1 :

Therefore,
NX
j=1

1

jp
< 1 + AN < p for all N :

This shows that the series is convergent.
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1.7 Problem 02 in section 5.2.

For an analytic function f = f(z), the Taylor series centered at a point z0 converges to f(z) ev-

erywhere inside the largest open disk (centered at z0) over which f is analytic. Thus to determine

where the various Taylor expansions below converge, we just need to determine the analytic domain

of the function f .

a) f(z) = e�z is entire, thus its Taylor expansion (around any point) is valid over the whole plane.

b) f(z) = cosh(z) =
ez + e�z

2
is entire, thus its Taylor expansion (around any point) is valid over

the whole plane.

c) f(z) = sinh(z) =
ez � e�z

2
is entire, thus its Taylor expansion (around any point) is valid over

the whole plane.

d) f(z) =
1

1� z
is analytic everywhere, except at z = 1. Thus its Taylor series centered at z0 = i

converges on the disk jz � ij < j1� ij =
p
2.

e) f(z) = Log(1� z) is analytic everywhere, except on z = Re z � 1. Therefore its Taylor series

centered at z0 = 0 converges on the disk jzj < 1.

f) f(z) = z3 is entire, thus its Taylor expansion (around any point) is valid over the whole plane.

1.8 Problem 04 in section 5.2.

Here we show that the following expansion

(1 + z)� = e�Log(1+z) =
1X
n=0

�(�� 1) : : : (�� n+ 1)

n!
zn ; (1.8.1)

is valid for jzj < 1 and any � (a complex number).

Equation (1.8.1) is just the Taylor expansion (around z = 0) for the function f(z) = e�Log(1+z) (we

show this below). To �nd its radius of convergence, we need to determine the largest disk (centered

at z = 0) over which f is analytic. Since Log(1 + z) is analytic everywhere (except on the half of

the real axis given by x = Re(z) � �1) and e�z is entire, it follows that f (as their composition)
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is analytic in the domain made up by the whole complex plane, with the half line x = Re(z) � �1
excluded. Thus the Taylor expansion around z = 0

f(z) =
1X
n=0

f (n)(0)

n!
zn ; (1.8.2)

converges for jzj < 1.

Now we compute f (n)(0). It is easy to see that

df

dz
= �(1 + z)(��1) ;

so that the derivative of f has the same form as f itself (with �! (�� 1)). Using induction it

then follows that
dnf

dzn
= �(�� 1) : : : (�� n + 1)(1 + z)��n ;

so that

f (n)(0) = �(�� 1) : : : (�� n+ 1) :

Then (1.8.1) follows from this last expression and (1.8.2) above.

Remark 1.8.1 For any complex number � and non-negative integer n, the binomial number is

de�ned by 0
B@ �

n

1
CA =

�(�� 1) : : : (�� n+ 1)

n!
:

(Notice that this is a degree n polynomial in �). Equation (1.8.1) is then just a generalization of

the binomial theorem to any complex power �, since (1.8.1) can be re-written as

(1 + z)� =
1X
n=0

0
B@ �

n

1
CA zn :

This expansion is an in�nite sum, except when � is a positive integer. In this case it is easy to see

that

0
B@ �

n

1
CA is zero when n > �, so that the expansion has a �nite number of terms and reduces to

the regular version of the binomial theorem.
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1.9 Problem 08 in section 5.2.

Here we use Taylor series to verify several identities.

a) sin(�z) = sin(z) Substituting z ! �z into the Taylor series for the sine (see equation (10) in

section 5.2 of the book), we obtain:

sin(�z) =
1X
n=0

(�1)n
(2n+ 1)!

(�z)2n+1 = �
1X
n=0

(�1)n
(2n+ 1)!

z2n+1 = � sin(z) :

Since sin(z) is entire, its Taylor series converges everywhere in the complex plane and the

equality holds for all z.

b)
dez

dz
= ez Consider the Taylor expansion for the exponential at the origin

ez =
1X
n=0

zn

n!
:

Di�erentiating both sides term by term, we get

dez

dz
=

1X
n=1

n
zn�1

n!
=

1X
n=0

zn

n!
= ez :

Since ez is entire, its Taylor series converges everywhere in the complex plane and the equality

holds for all z.

c) e�iz = cos(z)� i sin(z) We start with the Taylor expansion for the exponential at the origin

ez =
1X
n=0

zn

n!

and substitute z ! �iz. This yields

e�iz =
1X
n=0

(�i)nzn
n!

=
1X
n=0

(�i)2nz2n
(2n)!

+
1X
n=0

(�i)2n+1z2n+1
(2n + 1)!

=
1X
n=0

(�1)nz2n
(2n)!

� i
1X
n=0

(�1)nz2n+1
(2n+ 1)!

= cos z � i sin z :

Again, all the series involved converge everywhere, thus the equality holds for all z.
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d) e2z = (ez)2 Using the Taylor expansion for the exponential around the origin, we have

ezez =

 
1X
i=0

zi

i!

!0
@ 1X
j=0

zj

j!

1
A =

1X
n=0

0
@ X
i+j=n

1

i!j!

1
A zn :

From the binomial theorem

n!
X

i+j=n

1

i!j!
=

X
i+j=n

n!

i!j!
=

nX
i=0

0
B@ n

i

1
CA = (1 + 1)n = 2n :

Thus

(ez)2 =
1X
n=0

2n

n!
zn = e2z ;

which (again) holds for all z.

1.10 Problem 11 in section 5.3.

Consider two power series with a positive radius of convergence (each of them then de�nes an

analytic function in a neighborhood of the origin):

a(z) =
1X
0

akz
k and b(z) =

1X
0

bkz
k :

Let R be the smallest of the radius of convergence; then a and b are both analytic in the open disk

jzj < R, where the following also applies

dna(z)

dzn
=

1X
k=n

k!

(n� k)!
akz

k�n and
dnb(z)

dzn
=

1X
k=n

k!

(n� k)!
bkz

k�n :

Thus

an = n!
dna(0)

dzn
and bn = n!

dnb(0)

dzn
: (1.10.1)

a) If a(z) = b(z) in a neighborhood of the origin, then their derivatives at the origin are all equal.

Therefore (1.10.1) shows that ak = bk for all k.

b) If a(x) = b(x) for all x real in an open interval containing origin, then (again) the derivatives of

a and b are equal at the origin.2 Therefore (1.10.1) shows that ak = bk for all k.

2This because to calculate a derivative (once we know it exist) we can take the limit (in the di�erential quotient

de�ning the derivative) along any line approaching the point where we want the derivative.
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1.11 Problem 14 in section 5.3.

Here we consider the initial value problem

d2f

dz2
+ f = 0 ; where f(0) = 0 and f 0(1) = 1 : (1.11.1)

We use power series to show that, if f is analytic at z = 0, then f(z) = sin(z).

Since f is analytic at the origin, it must have a Maclaurin series representation. We can �nd this

series by computing the derivatives f (n)(0) at the origin, which we do next.

Because f satis�es the di�erential equation, we have

d2f(z)

dz2
= �f(z) :

Taking repeated derivatives of this equation, it is easy to see that we have (can be proved by

induction)
d2nf(z)

dz2n
= (�1)nf(z) and

d2n+1f(z)

dz2n
= (�1)ndf(z)

dz
;

for n = 0; 1; : : :. Thus, from the initial conditions at z = 0, we have

f (2n)(0) = 0 and f (2n+1)(0) = (�1)n :

Therefore, we can write the solution as

f(z) =
1X
n=0

1

n!
f (n)(0) zn =

1X
n=0

(�1)n
(2n+ 1)!

z2n+1 = sin z :

This �nishes the problem.

THE END.


