18.04 Recitation 6

Vishesh Jain

1. Let $A=\{z:|z| \leq 2\}$, and let $u(x, y)$ be a harmonic function on A. Let $B=\{z:|z|=$ $2\}$. Express the following in terms of u and B :
1.1. The maximum value of u on A.

Ans: $\max \{u(x, y):(x, y) \in B\}$
1.2. The minimum value of u on A.

Ans: $\min \{u(x, y):(x, y) \in B\}$
1.3. The value $u(0,0)$.

Ans: $\frac{1}{2 \pi} \int_{0}^{2 \pi} u(2 \cos \theta, 2 \sin \theta) d \theta$
2. Let $\Phi(z)=\phi(z)+i \psi(z)$ be an analytic function mapping a region B to another region A. Let $u(x, y)$ be a harmonic function on A.
2.1. Under the assumption that A is simply connected, show that $u(\phi(x, y), \psi(x, y))$ is a harmonic function on B.
Ans: Since u is a harmonic function on the simply connected region A, we can write $u=$ $\operatorname{Re}(f)$ for some analytic function f on A. Then, $u(\phi(x, y), \psi(x, y))=\operatorname{Re}(f \circ \Phi)$ is harmonic on B, since $f \circ \Phi$ is an analytic function on B.
2.2. Can we drop the assumption that A is simply connected?

Ans: Yes. Let $p(x, y)=u(\phi(x, y), \psi(x, y))$. We will explicitly compute $p_{x x}$ and $p_{y y}$ and show that $p_{x x}+p_{y y}=0$.

$$
\begin{aligned}
p_{x} & =u_{1}(\phi, \psi) \phi_{x}+u_{2}(\phi, \psi) \psi_{x} \\
p_{x x} & =u_{11} \phi_{x}^{2}+u_{12} \psi_{x} \phi_{x}+u_{1} \phi_{x x}+u_{21} \phi_{x} \psi_{x}+u_{22} \psi_{x}^{2}+u_{2} \psi_{x x} \\
& =u_{11} \phi_{x}^{2}-2 u_{12} \phi_{x} \phi_{y}+u_{22} \phi_{y}^{2}+u_{1} \phi_{x x}+u_{2} \psi_{x x} \\
p_{y} & =u_{1}(\phi, \psi) \phi_{y}+u_{2}(\phi, \psi) \psi_{y} \\
p_{y y} & =u_{11} \phi_{y}^{2}+u_{12} \psi_{y} \phi_{y}+u_{1} \phi_{y y}+u_{21} \phi_{y} \psi_{y}+u_{22} \psi_{y}^{2}+u_{2} \psi_{y y} \\
& =u_{11} \phi_{y}^{2}+2 u_{12} \phi_{x} \phi_{y}+u_{22} \phi_{x}^{2}+u_{1} \phi_{y y}+u_{2} \psi_{y y}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
p_{x x}+p_{y y} & =\left(u_{11}+u_{22}\right)\left(\phi_{y}^{2}+\phi_{x}^{2}\right)+u_{1}\left(\phi_{x x}+\phi_{y y}\right)+u_{2}\left(\psi_{x x}+\psi_{y y}\right) \\
& =0
\end{aligned}
$$

3. Consider the complex potential for the double source: $\Phi(z)=\log (z-1)+\log (z+1)=$ $\log \left(z^{2}-1\right)$.
3.1. Find the flow \boldsymbol{F}.

Ans: Write $\Phi(x, y)=\phi(x, y)+i \psi(x, y)$. Then

$$
\begin{aligned}
\phi(x, y) & =\operatorname{Re}\left(\log \left(z^{2}-1\right)\right) \\
& =\log \left|(x+i y)^{2}-1\right| \\
& =\log \sqrt{\left(x^{2}-y^{2}-1\right)^{2}+(2 x y)^{2}} \\
& =\frac{1}{2} \log \left(\left(x^{2}-y^{2}-1\right)^{2}+4 x^{2} y^{2}\right)
\end{aligned}
$$

and

$$
\boldsymbol{F}=\left(\phi_{x}, \phi_{y}\right)
$$

3.2. Show that on the y-axis, the flow is along the axis.

Ans: Check directly from the above expression for $\phi(x, y)$ that $\phi_{x}(0, y)=0$. Another way to do this is to notice that the y-axis is a stream line. Indeed, along the y-axis, the imaginary part of $\log \left(z^{2}-1\right)=\log \left((i y)^{2}-1\right)=\log \left(-y^{2}-1\right)$ is constant.
3.3. What are the stagnation points for this flow?

Ans: $z=0$. Indeed, $\Phi^{\prime}(z)=\frac{2 z}{z^{2}-1}$ vanishes only for $z=0$.
3.4. See the notes for Topic 6 to see the stream lines for this potential and some further discussion.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

