18.04 Recitation 12
 Vishesh Jain

1. Use Rouche's theorem to show that all 5 zeros of $z^{5}+3 z+1$ are inside the curve $C_{2}:=\{z:|z|=2\}$.
2. Use Rouche's theorem to show that $z+3+2 e^{z}$ has one zero in the left half plane.
3. Use Rouche's theorem to give another proof of the fundamental theorem of algebra i.e. to show that $z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ has exactly n roots in the complex plane.
4. Let $G(z)$ be a meromorphic function, and let $H(z):=\frac{G(z)}{1+G(z)}$. For a closed curve γ such that $G \circ \gamma$ does not go through -1 and G does not have any poles on γ, show that $P_{H, \gamma}=P_{G, \gamma}+\operatorname{Ind}(G \circ \gamma,-1)$.
5. Consider the method of images if there is a source at $(0,0)$, and walls at $y=1$ and $y=-1$. How many image sources do you need? What is the resulting complex potential?

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

