
18.04 Problem Set 2, Spring 2018 Solutions 

Problem 1. (20: 10,10 points) 
(a) Show that cos(𝑧) is an analytic for all 𝑧, i.e. it’s an entire function. Compute its 
derivative and show it equals − sin(𝑧). 
We’ll do this two ways, first from the definition of cos(𝑧) in terms of exponentials. Second, 
we’ll write cos(𝑧) as a function of 𝑥 and 𝑦 and verify the Cauchy-Riemann equations. 

Method 1. By definition cos(𝑧) = 
e𝑖𝑧 +

2 
e−𝑖𝑧 

, so cos(𝑧) is entire because both e𝑖𝑧 and e−𝑖𝑧 

are entire. Its derivative is 

𝑑 cos(𝑧) 𝑖e𝑖𝑧 − 𝑖e−𝑖𝑧 −e𝑖𝑧 + e−𝑖𝑧 

= = = − sin(𝑧) 𝑑𝑧 2 2𝑖 

Method 2. First let’s write cos(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) 

cos(𝑧) = 
e𝑖(𝑥+𝑖𝑦) + e−𝑖(𝑥+𝑖𝑦) 

= 
e−𝑦e𝑖𝑥 + e𝑦e−𝑖𝑥 

= … = cos(𝑥) cosh(𝑦) − 𝑖 sin(𝑥) sinh(𝑦) 2 2 

(You can work out the algebraic details of this formula.) Next we compute the partials and 
verify the Cauchy-Riemann equations. 

𝑢𝑥 = − sin(𝑥) cosh(𝑦) 𝑢𝑦 = cos(𝑥) sinh(𝑦) 

𝑣𝑥 = − cos(𝑥) sinh(𝑦) 𝑣𝑦 = −𝑖 sin(𝑥) cosh(𝑦) 

Since 𝑢𝑥 = 𝑣𝑦 and 𝑢𝑦 = 𝑣𝑥 the Cauchy-Riemann equations hold for all 𝑧 and cos(𝑧) is entire 
and 

𝑑 cos(𝑧) = 𝑢𝑥 − 𝑖𝑢𝑦 = − sin(𝑥) cosh(𝑦) − 𝑖 cos(𝑥) sinh(𝑦) = − sin(𝑧). 𝑑𝑧 

(You can easily check that the last expression is indeed − sin(𝑧).) 

(b) Give the region where cot(𝑧) is analytic. Compute its derivative. 

Since cot(𝑧) = 
cos(𝑧) 
sin(𝑧) 

is the quotient of entire functions it is analytic for all 𝑧 except where 

sin(𝑧) = 0. We know sin(𝑧) = 0 for all multiples of 𝜋. To see that this is all the zeros of sin 
we use the formula 

sin(𝑧) = sin(𝑥) cosh(𝑦) + 𝑖 cos(𝑥) sinh(𝑦) 

Since cosh(𝑦) is never 0, the real part of sin(𝑧) is only 0 where sin(𝑥) = 0, where 𝑥 = 𝑛𝜋 
for some integer 𝑛. Since cos(𝑛𝜋) ≠ 0, the imaginary part of sin(𝑧) is only 0 if sinh(𝑦) = 0. 
This only happens when 𝑦 = 0 Therefore, the zeros of sin(𝑧) are at 𝑧 = 𝑥 + 𝑖𝑦 = 𝑛𝜋. 
So cot(𝑧) is analytic on the set C − {𝑛𝜋 where 𝑛 is an integer}. 
We use the quotient rule to compute the derivative. Since the algebra will be identical to 
the real case, we know the derivative will be − csc2(𝑧): 

𝑑 cot(𝑧) = 𝑑𝑧 
𝑑 (cos(𝑧) − sin(𝑧) sin(𝑧) − cos(𝑧) cos(𝑧) = −

sin 

1
2(𝑧) 

= − csc2(𝑧). 𝑑𝑧 sin(𝑧) 
) = 

sin2(𝑧) 

1 
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Problem 2. (20: 10,10 points) 
𝑛 𝑃 ′(𝑧) 1(a) Let 𝑃 (𝑧) = (𝑧 − 𝑟1)(𝑧 − 𝑟2) … (𝑧 − 𝑟𝑛). Show that = ∑𝑃 (𝑧) 𝑧 − 𝑟𝑗 𝑗=1 

Suggestion: try 𝑛 = 2 and 𝑛 = 3 first. 
Following the suggestion for 𝑛 = 2: let 𝑃 (𝑧) = (𝑧 − 𝑟1)(𝑧 − 𝑟2). Using the product rule for 
𝑃 ′ we get 

𝑃 ′(𝑧) (𝑧 − 𝑟2) + (𝑧 − 𝑟1) 1 1= = + .𝑃 (𝑧) (𝑧 − 𝑟1)(𝑧 − 𝑟2) 𝑧 − 𝑟1 𝑧 − 𝑟2 

This is exactly what was claimed. The only difficulty in going to larger 𝑛 is in presenting 
the argument. We’ll let (𝑧 − 𝑟1)(𝑧 − 𝑟2)�(𝑧 − 𝑟��3

�) … (𝑧 − 𝑟𝑛) mean the product of all the terms 
leaving out the one with the line throught it. Then if 𝑃 (𝑧) = (𝑧 − 𝑟1)(𝑧 − 𝑟2) … (𝑧 − 𝑟𝑛) the 
product rule gives us 

𝑛 

𝑃 ′(𝑧) = ∑(𝑧 − 𝑟1)(𝑧 − 𝑟2) ⋯�(𝑧 − 𝑟���
𝑗) ⋯ (𝑧 − 𝑟𝑛).

𝑗=1 

From this it is clear that 

𝑃 ′(𝑧) 𝑛 (𝑧 − 𝑟1)(𝑧 − 𝑟2) ⋯�(𝑧 − 𝑟��𝑘
�) ⋯ (𝑧 − 𝑟𝑛) 𝑛 1= ∑ = ∑𝑃 (𝑧) 𝑗=1 

(𝑧 − 𝑟1)(𝑧 − 𝑟2) ⋯ (𝑧 − 𝑟𝑗) ⋯ (𝑧 − 𝑟𝑛) 𝑗=1 
𝑧 − 𝑟𝑗 

𝑑𝑧 
𝑑 (𝑎𝑧 + 𝑏 (b) Compute and simplify 𝑐𝑧 + 𝑑 

) . 

What happens when 𝑎𝑑 − 𝑏𝑐 = 0 and why? 

𝑎𝑧 + 𝑏 Let 𝑓(𝑧) = 𝑐𝑧 + 𝑑 
. The quotient rule gives 

𝑎(𝑐𝑧 + 𝑑) − (𝑎𝑧 + 𝑏)𝑐 𝑎𝑑 − 𝑏𝑐 𝑓′(𝑧) = = .(𝑐𝑧 + 𝑑)2 (𝑐𝑧 + 𝑑)2 

If 𝑎𝑑 − 𝑏𝑐 = 0 then the derivative is always 0, so 𝑓(𝑧) must be constant. We verify this 
directly: We know 𝑎/𝑐 = 𝑏/𝑑, call this ratio 𝑟. Then 

𝑎𝑧 + 𝑏 𝑟𝑐𝑧 + 𝑟𝑑 𝑓(𝑧) = = = 𝑟. 𝑐𝑧 + 𝑑 𝑐𝑧 + 𝑑 

This shows that 𝑓(𝑧) is constant. 

Problem 3. (10 points) 
Why does log(𝑒𝑧) not always equal 𝑧? 

Hint: This is true for any branch of log. Start with the principal branch. 
The function e𝑧 is many-to-one so it can’t possibly have an inverse. For example, e0 = 
e2𝜋𝑖 = e4𝜋𝑖 = … = 1. So, on any branch of log we’ll have 

log(e0) = log(e2𝜋𝑖) = log(1) 
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For example, if we choose the principal branch of log the log(1) = 0, so log(e2𝜋𝑖) ≠ 2𝜋𝑖. 

Problem 4. (20: 10,10 points) 
(a) Let 𝑓(𝑧) be analytic in a 𝐷 a disk centered at the origin. Show that 𝐹1(𝑧) = 𝑓(𝑧) is 
analytic in 𝐷. 
(b) Let 𝑓(𝑧) be as in part (a). Show that 𝐹2(𝑧) = 𝑓(𝑧) is not analytic unless 𝑓 is constant. 
Hint for both parts: Use the Cauchy-Riemann equations. 
The tricky part of this problem is keeping the notation straight while we take partial deriva-
tives for use in the Cauchy-Riemann equations. So, for 𝑧 = 𝑥 + 𝑖𝑦, let’s write 

𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). 

(a) Then 
𝐹1(𝑧) = 𝑓(𝑧) = 𝑢(𝑥, −𝑦) − 𝑖𝑣(𝑥, −𝑦). 

We can write 𝐹1(𝑧) = 𝑈1(𝑥, 𝑦) + 𝑖𝑉1(𝑥, 𝑦), where 𝑈1(𝑥, 𝑦) = 𝑢(𝑥, −𝑦) and 𝑉1(𝑥, 𝑦) = 
−𝑣(𝑥, −𝑦). Since 𝑓(𝑧) is analytic the Cauchy-Riemann equations say that 𝑢𝑥 = 𝑣𝑦 and
𝑢𝑦 = −𝑣𝑥. To check the Cauchy-Riemann equations on 𝐹1 we take the partial derivatives 
of 𝑈1 and 𝑉1. (We need to be careful with the −𝑦 when taking partials with respect to 𝑦.): 

𝜕𝑈1 𝜕𝑢 𝜕𝑈1 = −𝜕𝑢 
𝜕𝑥 

(𝑥, 𝑦) = 𝜕𝑥(𝑥, −𝑦), 𝜕𝑦 
(𝑥, −𝑦) 𝜕𝑦 

𝜕𝑉1 𝜕𝑉1 𝜕𝑣 
𝜕𝑥 

(𝑥, 𝑦) = −𝜕𝑥 
𝜕𝑣 (𝑥, −𝑦), = 𝜕𝑦 

(𝑥, −𝑦) 𝜕𝑦 

Applying the C-R equations for 𝑓(𝑧) we see they are satisfied by 𝐹1(𝑧): 

𝜕𝑈1 𝜕𝑢 𝜕𝑣 𝜕𝑉1
𝜕𝑥 

(𝑥, 𝑦) = 𝜕𝑥(𝑥, −𝑦) = 𝜕𝑦 
(𝑥, −𝑦) = 𝜕𝑦 

(𝑥, 𝑦) 

𝜕𝑈1 𝜕𝑣 
𝜕𝑦 

(𝑥, 𝑦) = −𝜕𝑢 
𝜕𝑦 

(𝑥, −𝑦) = 𝜕𝑥(𝑥, −𝑦) = −𝜕𝑉 
𝜕𝑥

1 (𝑥, 𝑦) 

Thus, 𝐹1(𝑧) is analytic. 
(b) This part is similar except we’ll find that the C-R equations are not satisfied 

𝐹2(𝑧) = 𝑓(𝑧) = 𝑢(𝑥, −𝑦) + 𝑖𝑣(𝑥, −𝑦). 

We can write 𝐹2(𝑧) = 𝑈2(𝑥, 𝑦) + 𝑖𝑉2(𝑥, 𝑦), where 𝑈2(𝑥, 𝑦) = 𝑢(𝑥, −𝑦) and 𝑉2(𝑥, 𝑦) = 
𝑣(𝑥, −𝑦). Taking partial derivatives we get 

𝜕𝑈2 𝜕𝑢 𝜕𝑈2 = −𝜕𝑢 
𝜕𝑥 

(𝑥, 𝑦) = 𝜕𝑥(𝑥, −𝑦), 𝜕𝑦 
(𝑥, −𝑦) 𝜕𝑦 

𝜕𝑉2 𝜕𝑣 𝜕𝑉2 = −𝜕𝑣 
𝜕𝑥 

(𝑥, 𝑦) = 𝜕𝑥(𝑥, −𝑦), 𝜕𝑦 
(𝑥, −𝑦) 𝜕𝑦 
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We see that 

𝜕𝑈2 𝜕𝑢 𝜕𝑣 
𝜕𝑥 

(𝑥, 𝑦) = 𝜕𝑥(𝑥, −𝑦) = 𝜕𝑦 
(𝑥, −𝑦) = −𝜕𝑉 

𝜕𝑦
2 (𝑥, 𝑦) 

𝜕𝑈2 𝜕𝑣 𝜕𝑉2
𝜕𝑦 

(𝑥, 𝑦) = −𝜕𝑢 
𝜕𝑦 

(𝑥, −𝑦) = 𝜕𝑥(𝑥, −𝑦) = 𝜕𝑥 
(𝑥, 𝑦) 

Thus, the C-R equations are not satisfied unless all the partials are 0, in which case 𝑓(𝑧) is 
constant. 

Problem 5. (10 points) 
𝑑𝑓 2Let 𝑓(𝑧) = |𝑧| . Show the 𝑑𝑧 

exists at 𝑧 = 0, but nowhere else. 

We’ll use the definition of the derivative as a limit. 

|𝑧|2 − |𝑧0|2𝑓′(𝑧0) = lim .
𝑧→𝑧0 𝑧 − 𝑧0 

For 𝑧0 = 0 this becomes 

|𝑧|2 𝑧𝑧 𝑓′(0) = lim = lim = lim 𝑧 = 0.
𝑧→0 𝑧 𝑧→0 𝑧 𝑧→0 

Since the limit exists, 𝑓 is analytic at 0 and 𝑓′(0) = 0. 
For 𝑧 ≠ 0 we show the limit does not exist by approaching 𝑧 from two directions and seeing 
that we get different limits. Let 𝑧 = 𝑥 + 𝑖𝑦. 
Approaching 𝑧 along a horizontal line we have Δ𝑧 = Δ𝑥 and 

|𝑧 + Δ𝑥|2 − |𝑧|2 (𝑥 + Δ𝑥)2 + 𝑦2 − (𝑥2 + 𝑦2) 2𝑥Δ𝑥 + (Δ𝑥)2 

lim = lim = lim = 2𝑥 
Δ𝑥→0 Δ𝑥 Δ𝑥→0 Δ𝑥 Δ𝑥→0 Δ𝑥 

Approaching 𝑧 along a vertical line we have Δ𝑧 = 𝑖Δ𝑦 and 

|𝑧 + 𝑖Δ𝑦|2 − |𝑧|2 𝑥2 + (𝑦 + Δ𝑦)2 − (𝑥2 + 𝑦2) 2𝑦Δ𝑦 + (Δ𝑦)2 

lim = lim = lim = −2𝑖𝑦. 
Δ𝑦→0 𝑖Δ𝑦 Δ𝑦→0 𝑖Δ𝑦 Δ𝑦→0 𝑖Δ𝑦 

Since 𝑥 and 𝑦 are both real, these two limits cannot be equal unless 𝑥 = 𝑦 = 0. Thus, 𝑓(𝑧) 
is not analytic for 𝑧 ≠ 0. 
Note: we could also have used the C-R equations on 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), where
𝑢(𝑥, 𝑦) = 𝑥2 + 𝑦2 and 𝑣(𝑥, 𝑦) = 0. 

Problem 6. (10 points) 
Using the principal branch of log give a region where 

√
𝑧2 − 1 is analytic. 

Even using the principal branch of log there are several possible answers to this question. 
Answer 1. The principal branch of log(𝑤) is defined on C − {negative real axis}. So we 
need to exclude those 𝑧 that put 𝑤 = 𝑧2 − 1 on the negative real axis. That is, we need 
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to exclude (make a branch cut on) the imaginary axis and the real interval [−1, 1]. This is 
shown in Figure 1. 
Answer 2. We write 

√
𝑧2 − 1 = 𝑧√1 − 1/𝑧2. Now we need to exclude those 𝑧 that put 

𝑤 = 1 − 1/𝑧2 on the negative real axis. That is, our branch cut is the real interval [−1, 1]. 
This is shown in Figure 2. 
Answer 3. We write 

√
𝑧2 − 1 = 

√𝑧 + 1
√

𝑧 − 1. Now we need to exclude those 𝑧 that put 
either 𝑤 = 𝑧 + 1 or 𝑤 = 𝑧 − 1 on the negative real axis. That is, our branch cut is the real 
interval (−∞, 1]. This is shown in Figure 3. 

𝑦 𝑦 𝑦 

−1 1 
𝑥 −1 1 

𝑥 1 
𝑥 

Figure 1. Figure 2. Figure 3. 

Note. It turns out that in Answer 3 we excluded more than we needed to. This is because 
we made two branch cuts: (−∞, −1] for 

√𝑧 + 1 and (−∞, 1) for 
√

𝑧 − 1. Thus the interval 
(−∞, −1] is covered twice and (−1, 1] just once. The square root function changes sign 
as 𝑧 crosses from one side of a branch cut to the other. Thus each factor in the product √𝑧 + 1

√
𝑧 − 1 changes sign as we cross (−∞, −1). This means the product doesn’t change 

sign and we don’t need that portion of the branch cuts! 
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