18.04 Recitation 1

Vishesh Jain

1.1. Is is true that $e^{\log (z)}=z$? Is is true that $\log \left(e^{z}\right)=z$?

Ans: The first part is true - compute directly. The second part is on problem set 2.
1.2. If you know one value of $\log (z)$, what are all the other values?

Ans: The other values differ by $i 2 n \pi$.
2. Let $z_{1}=2 e^{i \pi / 3}$ and $z_{2}=3+4 i$.
2.1. Compute $\log \left(z_{1}\right)$. What is the value in the principal branch?

Ans: $\log (2)+i \pi / 3+i 2 n \pi$. The value in the principal branch is $\log (2)+i \pi / 3$.
2.2. Compute $\log \left(z_{2}\right)$. What is the value in the principal branch?

Ans: $\log 5+i \theta+i 2 n \pi$ where $\theta=\arctan (4 / 3)$.
3.1. Is z^{a} single valued or multi-valued? Why?

Ans: Multivalued; this comes from the multivalued nature of log.
3.2. Suppose $z \neq 0$. Is z^{a} single valued or multi-valued when a is an integer?

Ans: Single-valued. Check directly using the definition $z^{a}=e^{a \log z}$.
3.3. If a is a real number, what do all the $a^{\text {th }}$ powers of z have in common?

Ans: They have the same absolute value.
3.4. If a is a purely imaginary number, what do all the $a^{\text {th }}$ powers of z have in common?

Ans: They have the same principal value for the argument.
4. Let $z_{1}=2 e^{i \pi / 3}$ and $z_{2}=3+4 i$.
4.1. Compute $z_{1}^{z_{2}}$.

Ans: $e^{3 \log 2-4(\pi / 3)} e^{i(4 \log 2+\pi)} e^{-8 n \pi} e^{i 6 n \pi}$
4.2. Compute $z_{1}^{1 / 4}$. How many distinct values do you get? Plot all these values in the complex plane.
Ans: We get the following four distinct values: $e^{\{\log (2)+i \pi / 3+i 2 n \pi\} \frac{1}{4}}=2^{1 / 4} e^{i \pi / 12}\left\{1, e^{i \pi / 2}, e^{i \pi}, e^{i 3 \pi / 2}\right\}$.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

