18.04 Recitation 11

Vishesh Jain
1.1. Find an LFT from the half-plane $H_{\alpha}:=\{(x, y): y>x \tan (\alpha)\}$ to the unit disc D_{1} centered at the origin.
1.2. Find a conformal map from the strip $I_{\pi}:=\{(x, y): 0<y<\pi\}$ to the upper half-plane H.
1.3. Find a conformal map from the upper semi-disc $R_{2}:=\left\{(x, y) \in D_{1}: y>0\right\}$ to the upper half-plane H.
1.4. Find a conformal map from the "infinite well" $W_{\pi}:=\{(x, y): 0<y<\pi, x<0\}$ to the upper half-plane.
2.1 Find the reflection of a point z_{1} in the x-axis.
2.2. Define the reflection $r_{C}\left(z_{2}\right)$ of a point z_{2} in a circle C as follows. Let $T_{C L}$ be an LFT mapping the circle C to a line L. Then, $r_{C}\left(z_{2}\right):=T_{C L}^{-1}\left(r_{L}\left(T_{C L}\left(z_{2}\right)\right)\right)$, where r_{L} denotes reflection in the line L. Use this definition to find the reflection of a point z_{2} in the unit circle.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

