18.04 Recitation 13
 Vishesh Jain

1. Compute $\mathcal{L}(\sin (\omega t) ; s)$, where $\omega \in \mathbb{R}$.
2. Suppose $f(t)$ has exponential type a. Show that $\mathcal{L}\left(f^{\prime} ; s\right)=s \mathcal{L}(f ; s)-f(0)$ for any s with $\operatorname{Re}(s)>a$. Use this to show that $\mathcal{L}\left(f^{\prime \prime} ; s\right)=s^{2} \mathcal{L}(f ; s)-s f(0)-f^{\prime}(0)$ for any s with $\operatorname{Re}(s)>a$, provided that $f^{\prime}(t)$ also has exponential type a.
3. Suppose that $f(t)$ has exponential type a, and $\operatorname{Re}(s)>a$. Show that $\mathcal{L}(t f(t) ; s)=$ $-\frac{d}{d s} \mathcal{L}(f(t) ; s)$. Use this to find $\mathcal{L}\left(t^{n} ; s\right)$ for all integers $n \geq 0$ for $\operatorname{Re}(s)>0$.
4. Explain why the following pairs of functions have the same Laplace transform.
4.1. $f(t)=1$ for all $t ; u(t)$ defined by $u(t)=1$ if $t>0$ and $u(t)=0$ if $t<0$.
4.2. $f(t)=e^{a t}$ for all $t ; g(t)$ defined by $g(t)=e^{a t}$ if $t \neq 2$ and $g(t)=0$ if $t=2$.
5. Use the Laplace transform and partial fractions to solve the differential equation

$$
x^{\prime \prime}+8 x^{\prime}+7 x=e^{-2 t}
$$

with initial conditions $x(0)=0, x^{\prime}(0)=1$.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

