18.04 Practice problems for final exam, Spring 2018 Solutions

On the final exam you will be given a copy of the Laplace table posted with these problems.

Problem 1.

Which of the following are meromporphic in the whole plane.
(a) z^{5}
(b) $z^{5 / 2}$
(c) $\mathrm{e}^{1 / z}$
(d) $1 / \sin (z)$.
answers: Meromorphic means analytic except for poles of finite order.
(a) Yes, this is entire.
(b) No, this requires a branch cut in the plane to define a region where it's analytic.
(c) No, the singularity at $z=0$ is an essential singularity, not a finite pole.
(d) Yes, $\sin (z)$ has simple zeros at $n \pi$ for all integers n. So $1 / \sin (z)$ has simple poles at these points.

Problem 2.
(a) Let $f(z)=\frac{(z-2)^{2} z^{3}}{(z+5)^{3}(z+1)^{3}(z-1)^{4}}$. Compute $\int_{|z|=3} \frac{f^{\prime}(z)}{f(z)} d z$
(b) Find the number of roots of $g(z)=6 z^{4}+z^{3}-2 z^{2}+z-1=0$ in the unit disk.
(c) Suppose $f(z)$ is analytic on and inside the unit circle. Suppose also that $|f(z)|<1$ for $|z|=1$. Show that $f(z)$ has exactly one fixed point $f\left(z_{0}\right)=z_{0}$ inside the unit circle.
(d) True or false: Suppose $f(z)$ is analytic on and inside a simple closed curve γ. If f has n zeros inside γ then $f^{\prime}(z)$ has $n-1$ zeros inside γ.
answers: (a) By the argument principle the $\int_{\gamma} \frac{f^{\prime}}{f} d z=2 \pi i\left(Z_{f, \gamma}-P_{f, \gamma}\right.$. In this case, the zeros of f inside γ are 2,0 of order 2 and 3 respectively. The poles inside γ are -1 and 1 of order 3 and 4 respectively. So, the integral equals

$$
2 \pi i(2+3-3-4)=-4 \pi i
$$

(b) On the unit circle $\left|z^{3}-2 z^{2}+z-1\right|<5$ and $\left|6 z^{4}\right|=6$. Therefore by Rouche's theorem the number of zeros of $g(z)$ inside the unit circle is equal to the number of zeros of $6 z^{4}$, i.e. 4 .
(c) Let $g(z)=f(z)-z$. We want to show g has exactly one root inside the unit circle. We know $|f(z)|<|-z|=1$ on the unit circle. So by Rouche's theorem $g(z)$ and $-z$ have the same number of zeros in the unit disk. That is, they both have exactly one such zero. QED.
(d) False. Consider $f(z)=\mathrm{e}^{z}-1$. This has 3 zeros inside the circle $|z|=3 \pi(0, \pm 2 \pi)$. But $f^{\prime}(z)=\mathrm{e}^{z}$ has no zeros.

Problem 3.

Let $A=\{z \mid 0 \leq \operatorname{Re}(z) \leq \pi / 2, \operatorname{Im}(z) \geq 0$.

Let $B=$ the first quadrant/
Show that $f(z)=\sin (z)$ maps A conformally onto B
answers: (a) You should supply a picture of the regions A and B and develop a picture tracking the argument we give. We see where f maps the boundary of A. The boundary of A has 3 pieces:

Piece 1: $z=i y$, with $y \geq 0$. On this piece

$$
\sin (z)=\frac{\mathrm{e}^{-y}-\mathrm{e}^{y}}{2 i}=\frac{\left(\mathrm{e}^{y}-\mathrm{e}^{-y}\right)}{2} i
$$

So, the image of piece 1 is the positive imaginary axis.
Piece 2: $z=x$, with $0 \leq x \leq \pi / 2$. On this piece $\sin (z)=\sin (x)$, so the image runs from 0 to 1 along the real axis.
Piece 3: $z=\pi / 2+i y$, with $y \geq 0$. On this piece

$$
\sin (z)=\frac{\mathrm{e}^{-y+\pi i / 2}-\mathrm{e}^{y-\pi i / 2}}{2 i}=\frac{\left(i \mathrm{e}^{-y}+i \mathrm{e}^{-y}\right)}{2 i}=\frac{\mathrm{e}^{-y}+\mathrm{e}^{y}}{2}=\cosh (y) .
$$

So, the image of piece 3 is the real axis greater than 1 .
We have shown that $f(z)$ maps the boundary of A to the boundary of B.
To see that A is mapped to B it's enough to verify that one point inside A is mapped to a point inside B. There are lots of ways to do this. Here's one. We know

$$
\sin (x+i y)=\frac{\mathrm{e}^{-y+i x}-\mathrm{e}^{y-i x}}{2 i}
$$

Pick $x=\pi / 4$ and y so large that e^{-y} is very tiny. Then

$$
\sin (x+i y) \approx-\mathrm{e}^{y} \mathrm{e}^{-i x} 2 i=-\mathrm{e}^{y} \frac{\sqrt{2} / 2-i \sqrt{2} / 2}{2 i}=\mathrm{e}^{y} \frac{\sqrt{2}+i \sqrt{2}}{4}
$$

This last value is clearly in the first quadrant, i.e inside B.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

