18.04 Recitation 6

Vishesh Jain

1. Let $A=\{z:|z| \leq 2\}$, and let $u(x, y)$ be a harmonic function on A. Let $B=\{z:|z|=$ $2\}$. Express the following in terms of u and B :
1.1. The maximum value of u on A.
1.2. The minimum value of u on A.
1.3. The value $u(0,0)$.
2. Let $\Phi(z)=\phi(z)+i \psi(z)$ be an analytic function mapping a region B to another region A. Let $u(x, y)$ be a harmonic function on A.
2.1. Under the assumption that A is simply connected, show that $u(\phi(x, y), \psi(x, y))$ is a harmonic function on B.
2.2. Can we drop the assumption that A is simply connected?
3. Consider the complex potential for the double source: $\Phi(z)=\log (z-1)+\log (z+1)=$ $\log \left(z^{2}-1\right)$.
3.1. Find the flow \boldsymbol{F}.
3.2. Show that on the y-axis, the flow is along the axis.
3.3. What are the stagnation points for this flow?
3.4. See the notes for Topic 6 to see the stream lines for this potential and some further discussion.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

