18.04 Recitation 3

Vishesh Jain

1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function. We write $f(x, y)=u(x, y)+i v(x, y)$. Suppose that u and v are C^{2} i.e. all partial derivatives of u and v of order up to (and including) 2 exist, and are continuous. Show that $f^{\prime}=\frac{d f}{d z}: \mathbb{C} \rightarrow \mathbb{C}$ is also analytic.
Ans: $f^{\prime}=u_{x}+i v_{x}$. Let $U=u_{x}, V=v_{x}$. Then, $U_{x}=u_{x x}, U_{y}=u_{x y}, V_{x}=v_{x x}, V_{y}=v_{x y}$. Therefore, $U_{x}=u_{x x}=\left(v_{y}\right)_{x}=v_{y x}=v_{x y}=V_{y}$. Also, $U_{y}=u_{x y}=u_{y x}=-v_{x x}=-V_{x}$.
2.1. Show that $\int \bar{z} d z$ is not path independent in \mathbb{C}. Why does this not contradict the fundamental theorem for complex line integrals?
Ans: Consider $\int_{\gamma} \bar{z} d z$ where γ is the unit circle centered at the origin. Parameterizing γ by $\gamma(t)=e^{i t}$, we get $\int_{\gamma} \bar{z} d z=\int_{0}^{2 \pi} e^{-i t} i e^{i t} d t=2 \pi i$.
2.2. For each $n \in \mathbb{Z}$, compute $\int_{\gamma} z^{n} d z$, where γ is the unit circle centered at the origin. Are your answers consistent with the fundamental theorem?
Ans: For $n \geq 0$, this is 0 by the fundamental theorem since $z^{n}=\frac{1}{n+1} \frac{d}{d z} z^{n+1}$ on \mathbb{C}.
For $n<-1$, this is 0 by the fundamental theorem since $z^{n}=\frac{1}{n+1} \frac{d}{d z} z^{n+1}$ on $\mathbb{C} \backslash\{0\}$, and γ is completely contained in $\mathbb{C} \backslash\{0\}$.
For $n=-1$, parameterize γ by $\gamma(t)=e^{i t}$ to get $\int_{\gamma} z^{-1} d z=\int_{0}^{2 \pi} e^{-i t} i e^{i t} d t=2 \pi i$.
2.3. Do any of the answers in 2.2. change if γ is a circle such that the disk bounded by the circle does not contain the origin?
Ans: All the answers are now zero, since we can enclose a circle not containing the origin in a region where $\log (z)$ is analytic, and then we can use that $z^{-1}=\frac{d}{d z} \log (z)$ in such a region.
2. Recall from Recitation 2 that $\cos (z)=\cos (x) \cosh (y)-i \sin (x) \sinh (y)$.
3.1. Consider the region $\mathcal{R}=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\pi\right\}$. What are the images of horizontal and vertical lines in \mathcal{R} ? Is the mapping $z \mapsto \cos (z)$ restricted to \mathcal{R} a one-to-one mapping?
Ans: Vertical lines $x_{0}+i t$ are sent to $\cos \left(x_{0}+i t\right)=\cos \left(x_{0}\right) \cosh (t)-i \sin \left(x_{0}\right) \sinh (t)$.
Viewed as a map to \mathbb{R}^{2}, this is $\left(\cos \left(x_{0}\right) \cosh (t),-\sin \left(x_{0}\right) \sinh (t)\right)$. This satisfies

$$
\frac{u^{2}}{\cos ^{2}\left(x_{0}\right)}-\frac{v^{2}}{\sin ^{2}\left(x_{0}\right)}=1
$$

which is the equation of a hyperbola.
Horizontal lines $t+i y_{0}$ are sent to $\cos \left(t+i y_{0}\right)=\cos (t) \cosh \left(y_{0}\right)-i \sin (t) \sinh \left(y_{0}\right)$.
This satisfies

$$
\frac{u^{2}}{\cosh ^{2}\left(y_{0}\right)}+\frac{v^{2}}{\sinh ^{2}\left(y_{0}\right)}=1
$$

which is the equation of an ellipse.
See attached figure.

3.2. To \mathcal{R}, add the half lines $x=0, y \geq 0$ and $x=\pi, y>0$ to produce a new region \mathcal{R}_{1}. What is the image of \mathcal{R}_{1} under the map $z \mapsto \cos (z)$? Is the map still one-to-one on \mathcal{R}_{1} ?
Ans: The image consists of the entire complex plane. Yes, the map is one-to-one.
3.3. Note that \mathcal{R}_{1} gives a branch of the multi-valued function $\cos ^{-1}(z)$. What are the branch cuts in the domain of $\cos ^{-1}(z)$ for this branch?

Ans: $(-\infty,-1)+i 0$ and $(1, \infty)+i 0$. Note that as you cross these segments vertically (say from up to down), $\cos ^{-1}(z)$ jumps sharply.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

