18.04 Recitation 8

Vishesh Jain

1.1 Show that if $g(z)$ has a simple zero at z_{0}, then $1 / g(z)$ has a simple pole at z_{0}.
1.2. Show that $\operatorname{Res}\left(1 / g, z_{0}\right)=1 / g^{\prime}\left(z_{0}\right)$.
1.3. Let $f(z)=1 / \sin (z)$. Find all the poles, show that they are simple, and use the previous part to find the residues at these poles.
Ans: See Property 5 on page 5 of Section 8 for 1.1 and 1.2. See Example 8.11 for 1.3.
2.1. Let $p(z)$ and $q(z)$ be analytic at $z=z_{0}$. Assume $p\left(z_{0}\right) \neq 0$ and q has a simple zero at z_{0}. Show that $\operatorname{Res}_{z=z_{0}}(p(z) / q(z))=p\left(z_{0}\right) / q^{\prime}\left(z_{0}\right)$.
2.2. Let $f(z)=\cot (z)$. Find all the poles, show that they are simple, and use the previous part to the find residues at these poles.
Ans: See Example 8.13 for 2.1 and Section 8.4.3. for 2.2.
3. By using the Taylor series of $\cos (z)$ and $\sin (z)$ around $z=0$, compute the first few terms of the Laurent expansion of $\cot (z)$ around $z=0$.
Ans: See Example 8.17.
4. Suppose $f(z)$ is analytic in the region A except for a set of isolated singularities. Suppose C is a simple closed curve in A that doesn't go through any of the singularities of f and is oriented counterclockwise.
4.1. Suppose that there is only one isolated singularity inside C at the point z_{1}. By using the extended version of Cauchy's theorem, show that $\int_{C} f(z) d z=2 \pi i \operatorname{Res}\left(f, z_{1}\right)$.
4.2. Suppose now that there are two isolated singularities inside C at the points z_{1} and z_{2}. Again, by using the extended version of Cauchy's theorem, show that $\int_{C} f(z) d z=$ $2 \pi i\left(\operatorname{Res}\left(f, z_{1}\right)+\operatorname{Res}\left(f, z_{2}\right)\right)$.
4.3. Generalize the previous part to show that

$$
\int_{C} f(z) d z=2 \pi i\left(\sum \text { residues of } f \text { inside } C\right)
$$

This is Cauchy's residue theorem.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

