18.04 Practice problems exam 1, Spring 2018

Problem 1. Complex arithmetic

(a) Find the real and imaginary part of $\frac{z+2}{z-1}$.

(b) Solve $z^4 - i = 0$.

(c) Find all possible values of $\sqrt{\sqrt{i}}$.

- (d) Express cos(4x) in terms of cos(x) and sin(x).
- (e) When does equality hold in the triangle inequality $|z_1 + z_2| \le |z_1| + |z_2|$?

(f) Draw a picture illustrating the polar coordinates of z and 1/z.

Problem 2. Functions

(a) Show that $\sinh(z) = -i \sin(iz)$.

(b) Give the real and imaginary part of cos(z) in terms of x and y using regular and hyperbolic sin and cos.

(c) Is it true that $|a^b| = |a|^{|b|}$?

Problem 3. Mappings

(a) Show that the function $f(z) = \frac{z-i}{z+i}$ maps the upper half plane to the unit disk.

(i) Show it maps the real axis to the unit circle.

(ii) Show it maps *i* to 0.

(iii) Conclude that the upper half plane is mapped to the unit disk.

(b) Show that the function $f(z) = \frac{z+2}{z-1}$ maps the unit circle to the line x = -1/2.

Problem 4. Analytic functions

(a) Show that $f(z) = e^z$ is analytic using the Cauchy Riemann equations.

(b) Show that $f(z) = \overline{z}$ is not analytic.

(c) Give a region in the z-plane for which $w = z^3$ is a one-to-one map onto the entire w-plane.

(d) Choose a branch of $z^{1/3}$ and a region of the z-plane where this branch is analytic. Do this so that the image under $z^{1/3}$ is contained in your region from part (c).

Problem 5. Line integrals

(a) Compute $\int_C x \, dz$, where C is the unit square.

(b) Compute
$$\int_C \frac{1}{|z|} dz$$
, where *C* is the unit circle.

(c) Compute $\int_C z \cos(z^2) dz$, where C is the unit circle.

(d) Draw the region $\mathbb{C} - \{x + i \sin(x) \text{ for } x \ge 0\}$. Is this region simply connected? Could you define a branch of log on this region?

- (e) Compute $\int_C \frac{z^2}{z^4-1}$ over the circle of radius 3 with center 0.
- (f) Does $\int_C \frac{e^z}{z^2} dz = 0$?. Here C is a simple closed curve.

(g) Compute
$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 16} dx$$
.

Problem 6.

Suppose f(z) is entire and |f(z)| > 1 for all z. Show that f is a constant.

Problem 7.

Suppose f(z) is analytic and |f| is constant on the disk $|z - z_0| \le r$. Show that f is constant on the disk.

Extra problems from pset 4

Problem 8. (a) Let $f(z) = e^{\cos(z)}z^2$. Let A be the disk $|z - 5| \le 2$. Show that f(z) attains both its maximum and minimum modulus in A on the circle |z - 5| = 2.

Hint: Consider 1/f(z).

(b) Suppose f(z) is entire. Show that if $f^{(4)}(z)$ is bounded in the whole plane then f(z) is a polynomial of degree at most 4.

(c) The function $f(z) = 1/z^2$ goes to 0 as $z \to \infty$, but it is not constant. Does this contradict Liouville's theorem?

Problem 9.

Show $\int_0^{\pi} e^{\cos\theta} \cos(\sin(\theta)) d\theta = \pi$. Hint, consider e^z/z over the unit circle.

Problem 10.

(a) Suppose f(z) is analytic on a simply connected region A and γ is a simple closed curve in A... Fix z_0 in A, but not on γ . Use the Cauchy integral formulas to show that

$$\int_{\gamma} \frac{f'(z)}{z - z_0} \, dz = \int_{\gamma} \frac{f(z)}{(z - z_0)^2} \, dz.$$

(b) Challenge: Redo part (a), but drop the assumption that A is simply connected.

Problem 11.

- (a) Compute $\int_C \frac{\cos(z)}{z} dz$, where *C* is the unit circle. (b) Compute $\int_C \frac{\sin(z)}{z} dz$, where *C* is the unit circle.
- (c) Compute $\int_C \frac{z^2}{z-1} dz$, where C is the circle |z| = 2.
- (d) Compute $\int_C \frac{e^z}{z^2} dz$, where C is the circle |z| = 1.
- (e) Compute $\int_C \frac{z^2 1}{z^2 + 1} dz$, where C is the circle |z| = 2.
- (f) Compute $\int_C \frac{1}{z^2 + z + 1} dz$ where C is the circle |z| = 2.

Problem 12.

Suppose f(z) is entire and $\lim_{z\to\infty} \frac{f(z)}{z} = 0$. Show that f(z) is constant.

You may use Morera's theorem: if g(z) is analytic on $A - \{z_0\}$ and continuous on A, then f is analytic on A.

18.04 Complex Variables with Applications Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.