18.04 Practice problems exam 1, Spring 2018

Problem 1. Complex arithmetic

(a) Find the real and imaginary part of $\frac{z+2}{z-1}$.
(b) Solve $z^{4}-i=0$.
(c) Find all possible values of $\sqrt{\sqrt{i}}$.
(d) Express $\cos (4 x)$ in terms of $\cos (x)$ and $\sin (x)$.
(e) When does equality hold in the triangle inequality $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$?
(f) Draw a picture illustrating the polar coordinates of z and $1 / z$.

Problem 2. Functions
(a) Show that $\sinh (z)=-i \sin (i z)$.
(b) Give the real and imaginary part of $\cos (z)$ in terms of x and y using regular and hyperbolic sin and cos.
(c) Is it true that $\left|a^{b}\right|=|a|^{|b|}$?

Problem 3. Mappings
(a) Show that the function $f(z)=\frac{z-i}{z+i}$ maps the upper half plane to the unit disk.
(i) Show it maps the real axis to the unit circle.
(ii) Show it maps i to 0 .
(iii) Conclude that the upper half plane is mapped to the unit disk.
(b) Show that the function $f(z)=\frac{z+2}{z-1}$ maps the unit circle to the line $x=-1 / 2$.

Problem 4. Analytic functions
(a) Show that $f(z)=\mathrm{e}^{z}$ is analytic using the Cauchy Riemann equations.
(b) Show that $f(z)=\bar{z}$ is not analytic.
(c) Give a region in the z-plane for which $w=z^{3}$ is a one-to-one map onto the entire w-plane.
(d) Choose a branch of $z^{1 / 3}$ and a region of the z-plane where this branch is analytic. Do this so that the image under $z^{1 / 3}$ is contained in your region from part (c).

Problem 5. Line integrals
(a) Compute $\int_{C} x d z$, where C is the unit square.
(b) Compute $\int_{C} \frac{1}{|z|} d z$, where C is the unit circle.
(c) Compute $\int_{C} z \cos \left(z^{2}\right) d z$, where C is the unit circle.
(d) Draw the region $\mathbf{C}-\{x+i \sin (x)$ for $x \geq 0\}$. Is this region simply connected? Could you define a branch of \log on this region?
(e) Compute $\int_{C} \frac{z^{2}}{z^{4}-1}$ over the circle of radius 3 with center 0 .
(f) Does $\int_{C} \frac{\mathrm{e}^{z}}{z^{2}} d z=0$?. Here C is a simple closed curve.
(g) Compute $\int_{-\infty}^{\infty} \frac{1}{x^{4}+16} d x$.

Problem 6.

Suppose $f(z)$ is entire and $|f(z)|>1$ for all z. Show that f is a constant.

Problem 7.

Suppose $f(z)$ is analytic and $|f|$ is constant on the disk $\left|z-z_{0}\right| \leq r$. Show that f is constant on the disk.

Extra problems from pset 4

Problem 8. (a) Let $f(z)=\mathrm{e}^{\cos (z)} z^{2}$. Let A be the disk $|z-5| \leq 2$. Show that $f(z)$ attains both its maximum and minimum modulus in A on the circle $|z-5|=2$.
Hint: Consider $1 / f(z)$.
(b) Suppose $f(z)$ is entire. Show that if $f^{(4)}(z)$ is bounded in the whole plane then $f(z)$ is a polynomial of degree at most 4.
(c) The function $f(z)=1 / z^{2}$ goes to 0 as $z \rightarrow \infty$, but it is not constant. Does this contradict Liouville's theorem?

Problem 9.

Show $\int_{0}^{\pi} \mathrm{e}^{\cos \theta} \cos (\sin (\theta)) d \theta=\pi$. Hint, consider e^{z} / z over the unit circle.

Problem 10.

(a) Suppose $f(z)$ is analytic on a simply connected region A and γ is a simple closed curve in A.. Fix z_{0} in A, but not on γ. Use the Cauchy integral formulas to show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{z-z_{0}} d z=\int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

(b) Challenge: Redo part (a), but drop the assumption that A is simply connected.

Problem 11.
(a) Compute $\int_{C} \frac{\cos (z)}{z} d z$, where C is the unit circle.
(b) Compute $\int_{C} \frac{\sin (z)}{z} d z$, where C is the unit circle.
(c) Compute $\int_{C} \frac{z^{2}}{z-1} d z$, where C is the circle $|z|=2$.
(d) Compute $\int_{C} \frac{\mathrm{e}^{z}}{z^{2}} d z$, where C is the circle $|z|=1$.
(e) Compute $\int_{C} \frac{z^{2}-1}{z^{2}+1} d z$, where C is the circle $|z|=2$.
(f) Compute $\int_{C} \frac{1}{z^{2}+z+1} d z$ where C is the circle $|z|=2$.

Problem 12.
Suppose $f(z)$ is entire and $\lim _{z \rightarrow \infty} \frac{f(z)}{z}=0$. Show that $f(z)$ is constant.

You may use Morera's theorem: if $g(z)$ is analytic on $A-\left\{z_{0}\right\}$ and continuous on A, then f is analytic on A.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

