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Vishesh Jain 

1. Basic complex arithmetic
1.1. Find real and imaginary parts of a complex number.
1.2. Express a complex number in polar form.
1.3. Euler’s formula; doing trignometry using the exponential function; hyperbolic sine and cosine.
1.4. Finding ��ℎ roots of a complex number. 

2. More complex arithmetic
2.1. arg(�) and its branches; principal branch of arg(�); continuity of arg(�). 
2.2. log(�) and its branches. 
2.3. Complex powers; computing the power coming from the principal branch of log(�). 

3. Complex functions as mappings
3.1. Behavior of horizontal/vertical/radial lines or circles under complex mappings.
3.2. Behavior of regions of the complex plane under complex mappings. 

4. Analytic functions
4.1. Definition of complex derivative; understand directly from the definition of the complex deriva-
tive why � is not analytic.
4.2. Understand difference between continuity and differentiability.
4.3. Cauchy-Riemann equations; use CR equations to show that a function is analytic at some point;
use CR to show that a function is not analytic at some point.

′ 4.4. For � = � + �� analytic, express � only in terms of � (and its partials) or � (and its partials). 
4.5. Region of analyticity for compositions of functions. 

5. Line integrals
5.1. Compute line integrals explicitly.
5.2. Fundamental theorem of complex line integrals; using the fundamental theorem even in certain
situations where the integrand is not analytic.
5.3. Path independence and Cauchy’s theorem; simple connectedness.
5.4. Using Cauchy’s theorem even in certain situations where � is not analytic on a simply connected 
region by splitting up the contour.
5.5. Extended Cauchy’s theorem; reducing certain integrals over more general contours to integrals
over circles. 

6. Cauchy’s integral formula (for derivatives)
6.1. Evaluating integrals using Cauchy’s integral formula (for derivatives); isolating singularities by
splitting the contour.
6.2. Computing real integrals using Cauchy’s integral formula (for derivatives); triangle inequality
for integrals. 

7. More applications of Cauchy’s formula
7.1. Analyticity of complex derivatives.
7.2. Cauchy’s inequality.
7.3. Liouville’s theorem. 
7.4 Mean value property.
7.5. Maximum modulus principle; finding the minimum modulus in certain situations. 
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