18.04 Recitation 9

Vishesh Jain

1. Evaluate $I_{1}=\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x$.

Ans: Example 9.4 in the notes.
2. Evaluate $I_{2}=\int_{0}^{2 \pi} \frac{1}{2-\sin \theta} d \theta$.

Ans: We begin by writing $z=e^{i \theta}$, so that $d z=i e^{i \theta} d \theta=i z d \theta$. Also, $\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}=$ $\frac{z-z^{-1}}{2 i}$. Making these substitutions, we get

$$
I_{2}=\int_{|z|=1} \frac{2 i}{4 i-\left(z-z^{-1}\right)} \frac{d z}{i z}=\int_{|z|=1} \frac{2}{4 i z-\left(z^{2}-1\right)} d z
$$

Let

$$
f(z)=-\frac{1}{z^{2}-4 i z-1}=-\frac{1}{(z-i(2+\sqrt{3}))(z-i(2-\sqrt{3}))} .
$$

Then,

$$
\begin{aligned}
I_{2} & =2 \int_{|z|=1} f(z) d z \\
& =2 \times 2 \pi i \times \sum \text { residues of } f \text { inside the unit circle. }
\end{aligned}
$$

f has simple poles at $i(2+\sqrt{3})$ and $i(2-\sqrt{3})$. Only the second one is inside the unit circle. Moreover, the residue at this pole is equal to $-\frac{1}{(i(2-\sqrt{3})-i(2+\sqrt{3}))}=\frac{1}{2 i \sqrt{3}}$. Therefore, $I_{2}=2 \pi / \sqrt{3}$.
3. Evaluate $I_{3}=\int_{0}^{2 \pi}(\sin \theta)^{2 n} d \theta$.

Ans: Making the same substitutions as for I_{2}, we get that

$$
I_{3}=\int_{|z|=1} \frac{\left(z^{2}-1\right)^{2 n}}{2^{2 n} i^{2 n+1} z^{2 n+1}} d z
$$

Let

$$
f(z)=\frac{\left(z^{2}-1\right)^{2 n}}{2^{2 n} i^{2 n+1} z^{2 n+1}}
$$

Then, by the residue theorem,

$$
I_{3}=2 \pi i \sum \text { residues of } f \text { inside the unit circle. }
$$

$f(z)$ has a pole of order $2 n+1$ at 0 . The residue at this pole is given by

$$
\frac{h^{(2 n)}(0)}{2^{2 n} i^{2 n+1}(2 n)!},
$$

where $h(z)=\left(z^{2}-1\right)^{2 n}$. Since $h^{(2 n)}(0) /(2 n)$! is precisely the coefficient of $z^{2 n}$, the binomial theorem gives that $h^{(2 n)}(0) /(2 n)!=\binom{2 n}{n}(-1)^{n}=\binom{2 n}{n} i^{2 n}$.
From this, it follows that the residue is equal to

$$
\frac{\binom{2 n}{n} i^{2 n}}{2^{2 n} i^{2 n+1}}=\frac{(2 n)!}{(n!)^{2} 2^{2 n} i}=\frac{(2 n)!}{\left(2^{n} n!\right)^{2} i}
$$

and hence,

$$
I_{3}=\frac{2 \pi(2 n)!}{\left(2^{n} n!\right)^{2}}
$$

4. Evaluate $I_{4}=\int_{1}^{\infty} \frac{d x}{x \sqrt{x^{2}-1}}$.

Ans: Example 9.8 in the notes.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

