18.04 Recitation 12

Vishesh Jain

1. Use Rouche's theorem to show that all 5 zeros of $z^{5}+3 z+1$ are inside the curve $C_{2}:=\{z:|z|=2\}$.
Ans: Example 11.7 in the notes.
2. Use Rouche's theorem to show that $z+3+2 e^{z}$ has one zero in the left half plane.

Ans: Example 11.8 in the notes.
3. Use Rouche's theorem to give another proof of the fundamental theorem of algebra i.e. to show that $z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ has exactly n roots in the complex plane.
Ans: Theorem following Example 11.8 in the notes.
4. Let $G(z)$ be a meromorphic function, and let $H(z):=\frac{G(z)}{1+G(z)}$. For a closed curve γ such that $G \circ \gamma$ does not go through -1 and G does not have any poles on γ, show that $P_{H, \gamma}=P_{G, \gamma}+\operatorname{Ind}(G \circ \gamma,-1)$.
Ans: Note that $P_{H, \gamma}=Z_{1+G, \gamma}$, so it suffices to show that $Z_{1+G, \gamma}-P_{G, \gamma}=\operatorname{Ind}(G \circ \gamma,-1)$. Since $1+G$ does not have zeros or poles on γ, the argument principle shows that

$$
\begin{aligned}
Z_{1+G, \gamma}-P_{1+G, \gamma} & =\operatorname{Ind}((1+G) \circ \gamma, 0) \\
& =\operatorname{Ind}(1+G \circ \gamma, 0) \\
& =\operatorname{Ind}(G \circ \gamma,-1) .
\end{aligned}
$$

Finally, note that $P_{1+G, \gamma}=P_{G, \gamma}$.
5. Consider the method of images if there is a source at $(0,0)$, and walls at $y=1$ and $y=-1$. How many image sources do you need? What is the resulting complex potential?
Ans: We add an image source at $(0,2)$ to make the $y=1$ wall a streamline. Then, we add image sources at $(0,-2)$ and $(0,-4)$ to make the $y=-1$ wall a streamline. However, when we do so, the $y=1$ wall is no longer a streamline, so we need to add sources at $(0,4)$ and $(0,6)$. When we do this, the $y=-1$ wall is no longer a streamline, and so on. Continuing this process, we see that we need a source at $\pm(0,2 n)$ for all $n \geq 1$, and the resulting complex potential is

$$
\Phi(z)=\log (z)+\sum_{n \geq 1} \log (z+2 n i)+\sum_{n \leq-1} \log (z-2 n i) .
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

