18.04 Recitation 13

Vishesh Jain

1. Compute $\mathcal{L}(\sin (\omega t) ; s)$, where $\omega \in \mathbb{R}$. For which values of s can you do this?

Ans: $\sin (\omega t)=\left(e^{i \omega t}-e^{-i \omega t}\right) / 2 i$. Since \mathcal{L} is linear, we get that

$$
\begin{aligned}
\mathcal{L}(\sin (\omega t) ; s) & =\frac{1}{2 i} \times\left(\mathcal{L}\left(e^{i \omega t} ; s\right)-\mathcal{L}\left(e^{-i \omega t} ; s\right)\right) \\
& =\frac{1}{2 i} \times\left(\frac{1}{s-i \omega}-\frac{1}{s+i \omega}\right) \\
& =\frac{\omega}{s^{2}+\omega^{2}}
\end{aligned}
$$

where the second line is valid for $\operatorname{Re}(s)>0$.
2. Suppose $f(t)$ has exponential type a. Show that $\mathcal{L}\left(f^{\prime} ; s\right)=s \mathcal{L}(f ; s)-f(0)$ for any s with $\operatorname{Re}(s)>a$. Use this to show that $\mathcal{L}\left(f^{\prime \prime} ; s\right)=s^{2} \mathcal{L}(f ; s)-s f(0)-f^{\prime}(0)$ for any s with $\operatorname{Re}(s)>a$, provided that $f^{\prime}(t)$ also has exponential type a.
Ans:

$$
\begin{aligned}
\mathcal{L}\left(f^{\prime} ; s\right) & =\int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t \\
& =\left.f e^{-s t}\right|_{0} ^{\infty}+s \int_{0}^{\infty} f(t) e^{-s t} d t \\
& =-f(0)+s \mathcal{L}(f ; s)
\end{aligned}
$$

where the last line uses the assumption that $\operatorname{Re}(s)>a$. Assuming that f^{\prime} also has exponential type a, we get that

$$
\begin{aligned}
\mathcal{L}\left(f^{\prime \prime}, s\right) & =-f^{\prime}(0)+s \mathcal{L}\left(f^{\prime} ; s\right) \\
& =-f^{\prime}(0)+s(-f(0)+s \mathcal{L}(f ; s)) \\
& =s^{2} \mathcal{L}(f ; s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

3. Suppose that $f(t)$ has exponential type a, and $\operatorname{Re}(s)>a$. Show that $\mathcal{L}(t f(t) ; s)=$ $-\frac{d}{d s} \mathcal{L}(f(t) ; s)$. Use this to find $\mathcal{L}\left(t^{n} ; s\right)$ for all integers $n \geq 0$ for $\operatorname{Re}(s)>0$.
Ans:

$$
\begin{aligned}
\frac{d}{d s} \mathcal{L}(f(t) ; s) & =\frac{d}{d s} \int_{0}^{\infty} f(t) e^{-s t} d s \\
& =-\int_{0}^{\infty} t f(t) e^{-s t} d s \\
& =-\mathcal{L}(t f(t) ; s)
\end{aligned}
$$

We know that $\mathcal{L}(1 ; s)=1 / s$. Therefore,

$$
\begin{aligned}
\mathcal{L}(t ; s) & =\frac{1}{s^{2}} \\
\mathcal{L}\left(t^{2} ; s\right) & =\frac{2}{s^{3}} \\
\mathcal{L}\left(t^{3} ; s\right) & =\frac{3 \times 2}{s^{4}} \\
\mathcal{L}\left(t^{4} ; s\right) & =\frac{2 \times 3 \times 4}{s^{5}}
\end{aligned}
$$

and so on. Continuing this way, we see that $\mathcal{L}\left(t^{n} ; s\right)=\frac{n!}{s^{n+1}}$.
4. Explain why the following pairs of functions have the same Laplace transform.
4.1. $f(t)=1$ for all $t ; u(t)$ defined by $u(t)=1$ if $t>0$ and $u(t)=0$ if $t<0$.

Ans: In the definition of the Laplace transform, we only integrate over t from 0 to ∞. For this region, the values of f and u are the same, therefore their Laplace transforms are also the same.
4.2. $f(t)=e^{a t}$ for all $t ; g(t)$ defined by $g(t)=e^{a t}$ if $t \neq 2$ and $g(t)=0$ if $t=2$.

Ans: Fix s, and note that $h(t):=f(t) e^{-s t}-g(t) e^{-s t}$ satisfies $h(t)=0$ if $t \neq 2$ and $h(t)=e^{(a-s) t}$ if $t=2$. Since the integral of any function which is nonzero at just one point is 0 , we get that $\int_{0}^{\infty} h(t) d t=0$ i.e. $\int_{0}^{\infty} f(t) e^{-s t}=\int_{0}^{\infty} g(t) e^{-s t}$ (whenever one of these integrals converges).
5. Use the Laplace transform and partial fractions to solve the differential equation

$$
x^{\prime \prime}+8 x^{\prime}+7 x=e^{-2 t}
$$

with initial conditions $x(0)=0, x^{\prime}(0)=1$.
Ans: Let $X(s):=\mathcal{L}(x(t) ; s)$. Then, taking the Laplace transform of both sides of the differential equation, we get

$$
\mathcal{L}\left(x^{\prime \prime}(t) ; s\right)+8 \mathcal{L}\left(x^{\prime}(t) ; s\right)+7 \mathcal{L}(x(t) ; s)=\mathcal{L}\left(e^{-2 t} ; s\right)
$$

i.e.

$$
\left\{s^{2} X-s x(0)-x^{\prime}(0)\right\}+8\{s X-x(0)\}+7 X=\frac{1}{s+2}
$$

i.e.

$$
X\left(s^{2}+8 s+7\right)=\frac{1}{s+2}+1
$$

Thus,

$$
\begin{aligned}
X & =\frac{1}{(s+2)(s+7)(s+1)}+\frac{1}{(s+7)(s+1)} \\
& =\frac{-1 / 5}{(s+2)}+\frac{1 / 30}{(s+7)}+\frac{1 / 6}{(s+1)}+\frac{-1 / 6}{(s+7)}+\frac{1 / 6}{(s+1)} \\
& =\frac{-1 / 5}{(s+2)}+\frac{1 / 3}{(s+1)}+\frac{-2 / 15}{(s+7)}
\end{aligned}
$$

So,

$$
X=\frac{1}{3} e^{-t}-\frac{1}{5} e^{-2 t}-\frac{2}{15} e^{-7 t} .
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

