18.04 Recitation 4

Vishesh Jain

1. We will compute $I=\int_{-\infty}^{\infty} \frac{1}{\left(1+x^{2}\right)^{2}} d x$ using Cauchy's integral formula. It will be helpful to recall the triangle inequality for integrals: $\left|\int_{\Gamma} f(z) d z\right| \leq \int_{\Gamma}|f(z)||d z|$.
1.1. Consider the semicircle C in the upper half plane which is centered at 0 and has radius R. Use Cauchy's integral formula to compute $\int_{C} \frac{1}{\left(1+z^{2}\right)^{2}} d z$.
1.2. Decompose $C=C_{1} \cup C_{2}$, where C_{1} denotes the segment between $-R$ and R on the x-axis, and C_{2} denotes the remaining part of C. Use the triangle inequality for integrals to give an upper bound on $\left|\int_{C_{2}} \frac{1}{\left(1+z^{2}\right)^{2}} d z\right|$.
1.3. Use the results of the previous two parts to obtain an estimate $\int_{C_{1}} \frac{1}{\left(1+z^{2}\right)^{2}} d z$. What happens as you take $R \rightarrow \infty$?
Ans: See Example 4.11 in the notes.
2.1. (Cauchy's inequality) Let C_{R} be the circle of radius R centered at the point z_{0}, and suppose that f is analytic on C_{R} and its interior. Further, let $M_{R}=\max _{z \in C_{R}}|f(z)|$. Use Cauchy's integral formula for derivatives, and the triangle inequality for integrals to show that

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}} .
$$

Ans: See Theorem 4.15 in the notes.
2.2. (Liouville's Theorem) Now, suppose f is an entire function and $|f(z)| \leq M$ for all $z \in \mathbb{C}$. By analyzing the $n=1$ case in the previous part, what can you say about f ?
Ans: See Theorem 4.16 in the notes.
3. (Fundamental Theorem of Algebra) Let $P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}$ be a degree n polynomial with $a_{n} \neq 0$. We will show that $P(z)$ has exactly n roots (counting multiplicities) over \mathbb{C}.
3.1. Assume for contradiction that $P(z) \neq 0$ for all $z \in \mathbb{C}$. Show that under this assumption, $f(z):=1 / P(z)$ is entire and bounded. Use Liouville's theorem to get a contradiction.
3.2. The previous part shows that P must have at least one root. Iterate it to show that P has exactly n roots (counting multiplicites).
Ans: See Section 4.7.2. of the notes.
4. (Mean value property) Let C_{R} be the circle of radius R centered at the point z_{0}, and suppose that f is analytic on C_{R} and its interior. Use Cauchy's integral formula to show that

$$
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+R e^{i \theta}\right) d \theta
$$

Ans: See Theorem 4.18 in the notes.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

