18.04 Recitation 3

Vishesh Jain

1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function. We write $f(x, y)=u(x, y)+i v(x, y)$. Suppose that u and v are C^{2} i.e. all partial derivatives of u and v of order up to (and including) 2 exist, and are continuous. Show that $f^{\prime}=\frac{d f}{d z}: \mathbb{C} \rightarrow \mathbb{C}$ is also analytic.
2.1. Show that $\int \bar{z} d z$ is not path independent in \mathbb{C}. Why does this not contradict the fundamental theorem for complex line integrals?
2.2. For each $n \in \mathbb{Z}$, compute $\int_{\gamma} z^{n} d z$, where γ is the unit circle centered at the origin. Are your answers consistent with the fundamental theorem?
2.3. Do any of the answers in 2.2 . change if γ is a circle such that the disk bounded by the circle does not contain the origin?
2. Recall from Recitation 2 that $\cos (z)=\cos (x) \cosh (y)-i \sin (x) \sinh (y)$.
3.1. Consider the region $\mathcal{R}=\left\{(x, y) \in \mathbb{R}^{2}: 0<x<\pi\right\}$. What are the images of horizontal and vertical lines in \mathcal{R} ? Is the mapping $z \mapsto \cos (z)$ restricted to \mathcal{R} a one-to-one mapping?
3.2. To \mathcal{R}, add the half lines $x=0, y \geq 0$ and $x=\pi, y>0$ to produce a new region \mathcal{R}_{1}. What is the image of \mathcal{R}_{1} under the map $z \mapsto \cos (z)$? Is the map still one-to-one on \mathcal{R}_{1} ?
3.3. Note that \mathcal{R}_{1} gives a branch of the multi-valued function $\cos ^{-1}(z)$. What are the branch cuts in the domain of $\cos ^{-1}(z)$ for this branch?

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

