18.04 Recitation 3 Vishesh Jain

1. Let $f : \mathbb{C} \to \mathbb{C}$ be an analytic function. We write f(x, y) = u(x, y) + iv(x, y). Suppose that *u* and *v* are C^2 i.e. all partial derivatives of *u* and *v* of order up to (and including) 2 exist, and are continuous. Show that $f' = \frac{df}{dz} : \mathbb{C} \to \mathbb{C}$ is also analytic.

2.1. Show that $\int \bar{z} dz$ is not path independent in \mathbb{C} . Why does this not contradict the fundamental theorem for complex line integrals?

2.2. For each $n \in \mathbb{Z}$, compute $\int_{\gamma} z^n dz$, where γ is the unit circle centered at the origin. Are your answers consistent with the fundamental theorem?

2.3. Do any of the answers in 2.2. change if γ is a circle such that the disk bounded by the circle does not contain the origin?

3. Recall from Recitation 2 that $\cos(z) = \cos(x) \cosh(y) - i \sin(x) \sinh(y)$.

3.1. Consider the region $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 : 0 < x < \pi\}$. What are the images of horizontal and vertical lines in \mathcal{R} ? Is the mapping $z \mapsto \cos(z)$ restricted to \mathcal{R} a one-to-one mapping?

3.2. To \mathcal{R} , add the half lines $x = 0, y \ge 0$ and $x = \pi, y > 0$ to produce a new region \mathcal{R}_1 . What is the image of \mathcal{R}_1 under the map $z \mapsto \cos(z)$? Is the map still one-to-one on \mathcal{R}_1 ?

3.3. Note that \mathcal{R}_1 gives a branch of the multi-valued function $\cos^{-1}(z)$. What are the branch cuts in the domain of $\cos^{-1}(z)$ for this branch?

18.04 Complex Variables with Applications Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.