
Topic 9 Notes
Jeremy Orloff 

9 Definite integrals using the residue theorem 

9.1 Introduction 

In this topic we’ll use the residue theorem to compute some real definite integrals. 
� 

� (�) �� ∫� 

The general approach is always the same 

1. Find a complex analytic function �(�) which either equals � on the real axis or which is closely 
connected to � , e.g. � (�) = cos(�), �(�) = e��. 

2. Pick a closed contour � that includes the part of the real axis in the integral. 

3. The contour will be made up of pieces. It should be such that we can compute ∫ 
�(�) �� over 

each of the pieces except the part on the real axis. 

4. Use the residue theorem to compute ∫� 
�(�) ��. 

5. Combine the previous steps to deduce the value of the integral we want. 

9.2 Integrals of functions that decay 

The theorems in this section will guide us in choosing the closed contour � described in the intro-
duction. 

The first theorem is for functions that decay faster than 1∕�. 

Theorem 9.1. (a) Suppose � (�) is defined in the upper half-plane. If there is an � > 1 and � > 0 
such that 

� |� (�)| < |�|� 

for |�| large then 

lim � (�) �� = 0, 
�→∞ ∫�� 

where �� is the semicircle shown below on the left. 
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Semicircles: left: �e��, 0 < � < � right: �e��, � < � < 2�. 

(b) If � (�) is defined in the lower half-plane and 

� |� (�)| < |�|� 
, 

where � > 1 then 

lim � (�) �� = 0, 
�→∞ ∫�� 

where �� is the semicircle shown above on the right. 

Proof. We prove (a), (b) is essentially the same. We use the triangle inequality for integrals and the
estimate given in the hypothesis. For � large 

� � � �� |∫�� 

� (�) �� | ≤ ∫�� 

|� (�)| |��| ≤ ∫�� 
|�|� 

|��| = ∫ �� 
� �� = 

��−1 
. 

0 

Since � > 1 this clearly goes to 0 as � → ∞. QED 

The next theorem is for functions that decay like 1∕�. It requires some more care to state and prove. 

Theorem 9.2. (a) Suppose � (�) is defined in the upper half-plane. If there is an � > 0 such that 

� |� (�)| < |�| 
for |�| large then for � > 0 

� (�)e��� �� = 0, lim 
�1→∞, �2→∞ ∫�1+�2+�3 

where �1 + �2 + �3 is the rectangular path shown below on the left. 
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Rectangular paths of height and width �1 + �2. 

(b) Similarly, if � < 0 then 

� (�)e��� �� = 0, lim 
�1→∞, �2→∞ ∫�1+�2+�3 

where �1 + �2 + �3 is the rectangular path shown above on the right. 

Note. In contrast to Theorem 9.1 this theorem needs to include the factor e���. 

Proof. (a) We start by parametrizing �1, �2, �3. 

�1: �1(�) = �1 + ��, � from 0 to �1 + �2 
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�2: �2(�) = � + �(�1 + �2), � from �1 to −�2 

�3: �3(�) = −�2 + ��, � from �1 + �2 to 0. 

Next we look at each integral in turn. We assume �1 and �2 are large enough that 

� |� (�)| < |�| 
on each of the curves �� . 

|∫�1 

� (�)e��� �� | ≤ ∫�1 

|� (�)e���| |��| ≤ ∫�1 
| ��| |e���| |��| 

�1+�2 � |e���1−��| �� √ = ∫ 0 �21 
+ �2 

�1+�2 ≤ 
� e−�� �� 
�1 ∫0 

� = (1 − e−�(�1+�2))∕�. 
�1 

Since � > 0, it is clear that this last expression goes to 0 as �1 and �2 go to ∞. 

|∫�2 

� (�)e��� �� | ≤ ∫�2 

|� (�)e���| |��| ≤ ∫�2 
| ��| |e���| |��| 

�1 � |e���−�(�1+�2)| �� √ = ∫ −�2 �2 + (�1 + �2)2 

�1+�2 ≤ 
�e−�(�1+�2) �� 
�1 + �2 ∫0 
−�(�1+�2) ≤ �e 

Again, clearly this last expression goes to 0 as �1 and �2 go to ∞. 

The argument for �3 is essentially the same as for �1, so we leave it to the reader. 

The proof for part (b) is the same. You need to keep track of the sign in the exponentials and make 
sure it is negative. 

Example. See Example 9.16 below for an example using Theorem 9.2. 

∞ ∞ 

9.3 Integrals ∫ 
and ∫ −∞ 0 

Example 9.3. Compute 
∞ 1 � ��. = ∫−∞ (1 + �2)2 
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Solution: Let 
� (�) = 1∕(1 + �2)2 . 

It is clear that for � large 
� (�) ≈ 1∕�4 . 

In particular, the hypothesis of Theorem 9.1 is satisfied. Using the contour shown below we have,
by the residue theorem, 

� (�) �� = 2�� 
∑ 

residues of � inside the contour. (1) ∫�1+�� 
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We examine each of the pieces in the above equation. 

� (�) ��: By Theorem 9.1(a), ∫�� 

lim � (�) �� = 0. 
�→∞ ∫�� 

� (�) ��: Directly, we see that ∫�1 

� ∞ 

lim � (�) �� = lim � (�) �� = ∫ 
� (�) �� = �. 

�→∞ ∫�1 
�→∞ ∫−� −∞ 

So letting � → ∞, Equation 1 becomes 

∞ ∑ 
� = ∫ 

� (�) �� = 2�� residues of � inside the contour. 
−∞ 

Finally, we compute the needed residues: � (�) has poles of order 2 at ±�. Only � = � is inside the 
contour, so we compute the residue there. Let 

1 �(�) = (� − �)2� (�) = 
(� + �)2 

. 

Then 
2 1 Res(�, �) = � ′(�) = − = 

(2�)3 4� 
So, 

� � = 2�� Res(�, �) = . 
2 



9 DEFINITE INTEGRALS USING THE RESIDUE THEOREM 5 

Example 9.4. Compute 
∞ 

= ∫ 
1 � ��. 

−∞ �4 + 1 

Solution: Let � (�) = 1∕(1 + �4). We use the same contour as in the previous example 
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As in the previous example, 

lim � (�) �� = 0 
�→∞ ∫�� 

and ∞ 

lim � (�) �� = ∫ 
� (�) �� = �. 

�→∞ ∫�1 −∞ 

So, by the residue theorem 

� = lim � (�) �� = 2�� 
∑ 

residues of � inside the contour. 
�→∞ ∫�1+�� 

The poles of � are all simple and at 

e��∕4, e�3�∕4, e�5�∕4, e�7�∕4. 

Only e��∕4 and e�3�∕4 are inside the contour. We compute their residues as limits using L’Hospital’s 
= e��∕4 ∶ rule. For �1 

� − �1 e−�3�∕4 1 1 Res(� , �1) = lim (� − �1)� (�) = lim = lim = = 
�→�1 �→�1 1 + �4 �→�1 4�3 4e�3�∕4 4 

= e�3�∕4 ∶ and for �2 

� − �2 e−��∕4 1 1 Res(�, �2) = lim (� − �2)� (�) = lim = lim = = 
�→�2 �→�2 1 + �4 �→�2 4�3 4e�9�∕4 4 

So, ( ) ( ) √ 
2 −1 − � 1 − � 2� � = 2��(Res(�, �1) + Res(�, �2)) = 2�� √ + √ = 2�� − √ = � 
2 4 2 4 2 4 2 

Example 9.5. Suppose � > 0. Show 

∞ cos(�) �e−� 
�� = . ∫0 �2 + �2 2� 
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Solution: The first thing to note is that the integrand is even, so 

1 ∞ cos(�) 
� = 

2 ∫−∞ �2 + �2 
. 

Also note that the square in the denominator tells us the integral is absolutely convergent. 

We have to be careful because cos(�) goes to infinity in either half-plane, so the hypotheses of The-
orem 9.1 are not satisfied. The trick is to replace cos(�) by e��, so 

∞ e�� 1 �̃ = ∫ 
��, with � = Re(�̃). 

−∞ �2 + �2 2 

Now let 
e�� 

� (�) = 
�2 + �2 

. 

For � = � + �� with � > 0 we have 

|e�(�+��)| e−� |� (�)| = |�2 + �2| = |�2 + �2| . 
Since e−� < 1, � (�) satisfies the hypotheses of Theorem 9.1 in the upper half-plane. Now we can
use the same contour as in the previous examples 
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We have 

lim � (�) �� = 0 
�→∞ ∫�� 

and ∞ 
̃ lim � (�) �� = ∫ 

� (�) �� = �. 
�→∞ ∫�1 −∞ 

So, by the residue theorem 

�̃ = lim � (�) �� = 2�� 
∑ 

residues of � inside the contour. 
�→∞ ∫�1+�� 

The poles of � are at ±�� and both are simple. Only �� is inside the contour. We compute the residue 
as a limit using L’Hospital’s rule 

e�� e−� 
Res(�, ��) = lim (� − ��) = . 

�→�� �2 + �2 2�� 

So, 
�e−� 

�̃ = 2�� Res(�, ��) = . 
� 
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Finally, 
1 �e−� 

� = Re(�̃) = , 
2 2� 

as claimed. 

Warning: Be careful when replacing cos(�) by e�� that it is appropriate. A key point in the above 
1 example was that � = Re(�̃). This is needed to make the replacement useful. 2 

9.4 Trigonometric integrals 

The trick here is to put together some elementary properties of � = e�� on the unit circle. 

1. e−�� = 1∕�. 

e�� + e−�� � + 1∕� 
2. cos(�) = = . 

2 2 

e�� − e−�� � − 1∕� 
3. sin(�) = = . 

2� 2� 

We start with an example. After that we’ll state a more general theorem. 

Example 9.6. Compute 
2� �� . ∫0 1 + �2 − 2� cos(�) 

Assume that |�| ≠ 1. 

Solution: Notice that [0, 2�] is the interval used to parametrize the unit circle as � = e��. We need 
to make two substitutions: 

� + 1∕� 
cos(�) = 

2 

�� = �e�� �� ⇔ 
�� �� = 
�� 

Making these substitutions we get 

2� �� � = ∫ 0 1 + �2 − 2� cos(�) 
1 �� 

⋅ = ∫|�|=1 1 + �2 − 2�(� + 1∕�)∕2 �� 

1 ��. = ∫|�|=1 �((1 + �2)� − �(�2 + 1)) 

So, let 
1 � (�) = . 

�((1 + �2)� − �(�2 + 1)) 
The residue theorem implies ∑ 

� = 2�� residues of � inside the unit circle. 
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We can factor the denominator: 

−1 � (�) = 
��(� − �)(� − 1∕�)

. 

The poles are at �, 1∕�. One is inside the unit circle and one is outside. 

1 If |�| > 1 then 1∕� is inside the unit circle and Res(�, 1∕�) = 
�(�2 − 1) 
1 If |�| < 1 then � is inside the unit circle and Res(�, �) = 

�(1 − �2) 

We have { 
2� if � > 1 

�2−1 � = 2� if |�| < 1 1−�2 

The example illustrates a general technique which we state now. 

Theorem 9.7. Suppose �(�, �) is a rational function with no poles on the circle 

�2 + �2 = 1 

then for ( ) 
1 � + 1∕� � − 1∕� 

� (�) = � , 
�� 2 2� 

we have 
2� ∑ 

�(cos(�), sin(�)) �� = 2�� residues of � inside |�| = 1. ∫0 

Proof. We make the same substitutions as in Example 9.6. So, ( ) 2� � + 1∕� � − 1∕� �� �(cos(�), sin(�)) �� = ∫|�|=1 
� , ∫ 2 2� �� 0 

The assumption about poles means that � has no poles on the contour |�| = 1. The residue theorem 
now implies the theorem. 

9.5 Integrands with branch cuts 

Example 9.8. Compute 
∞ �1∕3 

� ��. = ∫0 1 + �2 

Solution: Let 
�1∕3 

� (�) = 
1 + �2 

. 

Since this is asymptotically comparable to �−5∕3, the integral is absolutely convergent. As a complex 
function 

�1∕3 
� (�) = 

1 + �2 
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needs a branch cut to be analytic (or even continuous), so we will need to take that into account with
our choice of contour. 

First, choose the following branch cut along the positive real axis. That is, for � = �e�� not on the 
axis, we have 0 < � < 2�. 

Next, we use the contour �1 + �� − �2 − �� shown below. 

Re(z)

Im(z)

CR

C1

−C2

−Cr

i

−i

Contour around branch cut: inner circle of radius �, outer of radius �. 

We put convenient signs on the pieces so that the integrals are parametrized in a natural way. You 
should read this contour as having � so small that �1 and �2 are essentially on the �-axis. Note well, 
that, since �1 and �2 are on opposite sides of the branch cut, the integral 

� (�) �� ≠ 0. ∫�1−�2 

First we analyze the integral over each piece of the curve. 

On ��: Theorem 9.1 says that 

lim � (�) �� = 0. 
�→∞ ∫�� 

On ��: For concreteness, assume � < 1∕2. We have |�| = �, so 

|�1∕3| �1∕3 ≤ 
(1∕2)1∕3 |� (�)| = |1 + �2| ≤ 

1 − �2 3∕4 
. 

Call the last number in the above equation � . We have shown that, for small �, |� (�)| < � . So, 
2� 2� | � (�) ��| ≤ ∫ 

|� (�e��)||��e��| �� ≤ ∫ 
�� �� = 2���. |∫�� | 0 0 

Clearly this goes to zero as � → 0. 

On �1: 
∞ 

lim � (�) �� = ∫ 
� (�) �� = �. 

�→0, �→∞ ∫�1 0 

= e�2�∕3|�|1∕3 On �2: We have (essentially) � = 2�, so �1∕3 . Thus, 
∞ 

lim � (�) �� = e�2�∕3 ∫ 
� (�) �� = e�2�∕3�. 

�→0, �→∞ ∫�2 0 
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The poles of � (�) are at ±�. Since � is meromorphic inside our contour the residue theorem says 

� (�) �� = 2��(Res(� , �) + Res(� , −�)). ∫�1+�� −�2−�� 

Letting � → 0 and � → ∞ the analysis above shows 

(1 − e�2�∕3)� = 2��(Res(� , �) + Res(�, −�)) 

All that’s left is to compute the residues using the chosen branch of �1∕3 

(−�)1∕3 (e�3�∕2)1∕3 e−�� 
Res(� , −�) = = = = −1 

−2� 2e�3�∕2 2 2 
�1∕3 e��∕6 e−��∕3 

Res(�, �) = = = 
2� 2e��∕2 2 

A little more algebra gives √ −1 + e−��∕3 
(1 − e�2�∕3)� = 2�� ⋅ = ��(−1 + 1∕2 − � 3∕2) = −��e��∕3. 

2 

Continuing 

−��e��∕3 �� �∕2 �∕2 � � = = = = = √ . 1 − e�2�∕3 e��∕3 − e−��∕3 (e��∕3 − e−��∕3)∕2� sin(�∕3) 3 

Whew! (Note: a sanity check is that the result is real, which it had to be.) 

Example 9.9. Compute 
∞ �� � √ . = ∫1 � �2 − 1 

Solution: Let 
1 � (�) = √ . 

� �2 − 1 

The first thing we’ll show is that the integral 
∞ 

� (�) �� ∫1 

is absolutely convergent. To do this we split it into two integrals 

∞ 2 ∞ �� �� �� √ √ √ . ∫ 
= ∫ 

+ ∫ 1 � �2 − 1 1 � �2 − 1 2 � �2 − 1 

The first integral on the right can be rewritten as 

2 
2 2 √ 1 1 1 1 2 √ ⋅ √ �� ≤ ∫ √ ⋅ √ �� = √ � − 1 . ∫1 � � + 1 � − 1 1 2 � − 1 2 |1 

This shows the first integral is absolutely convergent. 



9 DEFINITE INTEGRALS USING THE RESIDUE THEOREM 11 

The function � (�) is asymptotically comparable to 1∕�2, so the integral from 2 to ∞ is also absolutely 
convergent. 

We can conclude that the original integral is absolutely convergent. 

Next, we use the following contour. Here we assume the big circles have radius � and the small 
ones have radius �. 

Re(z)

Im(z)

R

rr

C1

C2 −C3

−C4

C5

−C6

−C7

1−1

C8

We use the branch cut for square root that removes the positive real axis. In this branch 

0 < arg(�) < 2� and 0 < arg( 
√ 
�) < �. 

For � (�), this necessitates the branch cut that removes the rays [1, ∞) and (−∞, −1] from the com-
plex plane. 

The pole at � = 0 is the only singularity of � (�) inside the contour. It is easy to compute that 

1 1 Res(�, 0) = √ = = −�. 
� −1 

So, the residue theorem gives us 

� (�) �� = 2�� Res(� , 0) = 2�. (2) ∫�1+�2−�3−�4+�5−�6−�7+�8 

In a moment we will show the following limits 

lim � (�) �� = lim � (�) �� = 0 
�→∞ ∫�1 

�→∞ ∫�5 

lim � (�) �� = lim � (�) �� = 0. 
�→0 ∫�3 

�→0 ∫�7 

We will also show 

lim � (�) �� = lim � (�) �� 
�→∞, �→0 ∫�2 

�→∞, �→0 ∫−�4 

= lim � (�) �� = lim � (�) �� = �. 
�→∞, �→0 ∫−�6 

�→∞, �→0 ∫�8 
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Using these limits, Equation 2 implies 4� = 2�, i.e. 

� = �∕2. 

All that’s left is to prove the limits asserted above. 

The limits for �1 and �5 follow from Theorem 9.1 because 

|� (�)| ≈ 1∕|�|3∕2 

for large �. 

We get the limit for �3 as follows. Suppose � is small, say much less than 1. If 

� = −1 + �e�� 

is on �3 then, 

|� (�)| = √ 
1 √ = 

1 √ √ ≤ 
�√ . |� � − 1 � + 1| | − 1 + �e��| | − 2 + �e��| � � 

where � is chosen to be bigger than 

1 √ | − 1 + �e��| | − 2 + �e��| 
for all small �. 

Thus, 

||∫�3 

� (�) ��|| ≤ ∫�3 

√ �√ |��| ≤ 
�√ ⋅ 2�� = 2�� �. 

� � 

This last expression clearly goes to 0 as � → 0. 

The limit for the integral over �7 is similar. 

We can parameterize the straight line �8 by 

� = � + ��, 

where � is a small positive number and � goes from (approximately) 1 to ∞. Thus, on �8, we have 

arg(�2 − 1) ≈ 0 and � (�) ≈ � (�). 

All these approximations become exact as � → 0. Thus, 
∞ 

lim � (�) �� = ∫ 
� (�) �� = �. 

�→∞, �→0 ∫�8 1 

We can parameterize −�6 by 
� = � − �� 

where � goes from ∞ to 1. Thus, on �6, we have 

arg(�2 − 1) ≈ 2�, 
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so √ √ 
�2 − 1 ≈ − �2 − 1. 

This implies 
1 � (�) ≈ − √ = −� (�). 

� �2 − 1 

Thus, 
1 ∞ 

lim � (�) �� = ∫ 
−� (�) �� = ∫ 

� (�) �� = �. 
�→∞, �→0 ∫−�6 ∞ 1 

We can parameterize �2 by � = −� + �� where � goes from ∞ to 1. Thus, on �2, we have 

arg(�2 − 1) ≈ 2�, 

so √ √ 
�2 − 1 ≈ − �2 − 1. 

This implies 
1 � (�) ≈ √ = � (�). 

(−�)(− �2 − 1) 
Thus, 

1 ∞ 

lim � (�) �� = ∫ 
� (�) (−��) = ∫ 

� (�) �� = �. 
�→∞, �→0 ∫�2 ∞ 1 

The last curve −�4 is handled similarly. 

9.6 Cauchy principal value 

First an example to motivate defining the principal value of an integral. We’ll actually compute the
integral in the next section. 

Example 9.10. Let 
∞ sin(�) 

� ��. = ∫ � 0 

This integral is not absolutely convergent, but it is conditionally convergent. Formally, of course, 
we mean 

� sin(�) 
� = lim ��. 

�→∞ ∫ � 0 

We can proceed as in Example 9.5. First note that sin(�)∕� is even, so 

1 ∞ sin(�) 
� = ��. 

2 ∫ � −∞ 

Next, to avoid the problem that sin(�) goes to infinity in both the upper and lower half-planes we 
replace the integrand by e

�� 
. 

� 

We’ve changed the problem to computing 

∞ e�� 
�̃ = ∫ 

��. 
� −∞ 
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The problems with this integral are caused by the pole at 0. The biggest problem is that the integral
doesn’t converge! The other problem is that when we try to use our usual strategy of choosing a
closed contour we can’t use one that includes � = 0 on the real axis. This is our motivation for 
defining principal value. We will come back to this example below. 

Definition. Suppose we have a function � (�) that is continuous on the real line except at the point 
�1, then we define the Cauchy principal value as 

∞ �1−�1 � 

p.v. ∫ 
� (�) �� = lim � (�) �� + ∫ 

� (�) ��. 
�→∞, �1→0 ∫ −∞ −� �1+�1 

Provided the limit converges. You should notice that the intervals around �1 and around ∞ are 
symmetric. Of course, if the integral 

∞ 

� (�) �� ∫−∞ 

converges, then so does the principal value and they give the same value. We can make the definition
more flexible by including the following cases. 

1. If � (�) is continuous on the entire real line then we define the principal value as 
∞ � 

p.v. ∫ 
� (�) �� = lim � (�) �� 

�→∞ ∫ −∞ −� 

2. If we have multiple points of discontinuity, �1 < �2 < �3 < … < ��, then 
∞ �1−�1 �2−�2 �3−�3 � 

p.v. ∫ 
� (�) �� = lim ∫ 

� (�) �� + ∫ 
+ ∫ 

+… ∫ 
� (�) ��. 

−∞ −� �1+�1 �2+�2 ��+�� 

Here the limit is taken as � → ∞ and each of the �� → 0. 

x
x1 x2

[ ] [ ] [ ]

−R x1 − r1 x1 − r1 x2 − r2 x2 − r2 R

Intervals of integration for principal value are symmetric around �� and ∞ 

The next example shows that sometimes the principal value converges when the integral itself does
not. The opposite is never true. That is, we have the following theorem. 

∞ 

Theorem 9.11. If � (�) has discontinuities at �1 < �2 < … < �� and ∫ 
� (�) �� converges then 

−∞ ∞ 

so does p.v. ∫ 
� (�) ��. 

−∞ 

Proof. The proof amounts to understanding the definition of convergence of integrals as limits. The
integral converges means that each of the limits 

�1−�1 

lim � (�) �� 
�1→∞, �1→0 ∫−�1 

�2−�2 

lim 
�1→0, �2→0 ∫ �1+�1 

� (�) �� 

… (3) 

lim 
�2→∞, ��→0 ∫ 

�2 

� (�) ��. 
��+�� 
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converges. There is no symmetry requirement, i.e. �1 and �2 are completely independent, as are �1 
and �1 etc. 

The principal value converges means 

�1−�1 �2−�2 �3−�3 � 

lim ∫ 
+ ∫ 

+ ∫ 
+… ∫ 

� (�) �� (4) 
−� �1+�1 �2+�2 ��+�� 

converges. Here the limit is taken over all the parameter � → ∞, �� → 0. This limit has symmetry, 
e.g. we replaced both �1 and �1 in Equation 3 by �1 etc. Certainly if the limits in Equation 3 converge 
then so do the limits in Equation 4. QED 

Example 9.12. Consider both 

∞ ∞ 1 1 �� and p.v. ∫ 
��. ∫ � � −∞ −∞ 

The first integral diverges since 

−�1 �2 1 1 �� + ∫ 
�� = ln(�1) − ln(�1) + ln(�2) − ln(�2). ∫ � � −�1 �2 

This clearly diverges as �1, �2 → ∞ and �1, �2 → 0. 

On the other hand the symmetric integral 

−� � 1 1 �� + ∫ 
�� = ln(�) − ln(�) + ln(�) − ln(�) = 0. ∫ � � −� � 

This clearly converges to 0. 

We will see that the principal value occurs naturally when we integrate on semicircles around points.
We prepare for this in the next section. 

9.7 Integrals over portions of circles 

We will need the following theorem in order to combine principal value and the residue theorem. 

Theorem 9.13. Suppose � (�) has a simple pole at �0. Let �� be the semicircle �(�) = �0 + �e��, 
with 0 ≤ � ≤ �. Then 

lim � (�) �� = �� Res(� , �0) (5) 
�→0 ∫�� 

Re(z)

Im(z)

z0

r

Cr

Small semicircle of radius � around �0 



9 DEFINITE INTEGRALS USING THE RESIDUE THEOREM 16 

Proof. Since we take the limit as � goes to 0, we can assume � is small enough that � (�) has a Laurent 
expansion of the punctured disk of radius � centered at �0. That is, since the pole is simple, 

�1 � (�) = + �0 + �1(� − �0) + … for 0 < |� − �0| ≤ �. 
� − �0 

Thus, 
� � ( ) 

� (�) �� = ∫ 
� (�0 + �e��) ��e�� �� = ∫ 

�1� + �0��e�� + �1��
2e�2� +… �� ∫�� 0 0 

The �1 term gives ���1. Clearly all the other terms go to 0 as � → 0. QED. 

If the pole is not simple the theorem doesn’t hold and, in fact, the limit does not exist. 

The same proof gives a slightly more general theorem. 

Theorem 9.14. Suppose � (�) has a simple pole at �0. Let �� be the circular arc �(�) = �0 + �e��, 
with �0 ≤ � ≤ �0 + �. Then 

lim � (�) �� = �� Res(� , �0) �→0 ∫�� 

Re(z)

Im(z)

z0
r

Cr

α

Small circular arc of radius � around �0 

Example 9.15. (Return to Example 9.10.) A long time ago we left off Example 9.10 to define 
principal value. Let’s now use the principal value to compute 

∞ e�� 
�̃ = p.v. ∫ 

��. 
� −∞ 

Solution: We use the indented contour shown below. The indentation is the little semicircle the goes 
around � = 0. There are no poles inside the contour so the residue theorem implies 

e�� 
�� = 0. 

� ∫�1−��+�2+�� 

Re(z)

Im(z)

0

C1 C2

CR

−Cr

−R −r r R

2Ri
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Next we break the contour into pieces. 

e�� 
̃ lim �� = �. 

�→∞, �→0 ∫�1+�2 
� 

Theorem 9.2(a) implies 
e�� 

lim �� = 0. 
� �→∞ ∫�� 

Equation 5 in Theorem 9.13 tells us that 

lim 
�→0 ∫�� 

( ) 
e�� e�� 

�� = �� Res , 0 = �� 
� � 

Combining all this together we have 

e�� 
lim �� = �̃ − �� = 0, 

�→∞, �→0 ∫�1−��+�2+�� 
� 

∞ sin(�) so �̃ = ��. Thus, looking back at Example 5, where � = ∫ 
��, we have 

� 0 

1 � � = Im(�̃) = 
2 
. 

2 

There is a subtlety about convergence we alluded to above. That is, � is a genuine (conditionally) 
convergent integral, but �̃ only exists as a principal value. However since � is a convergent integral 
we know that computing the principle value as we just did is sufficient to give the value of the 
convergent integral. 

9.8 Fourier transform 

Definition. The Fourier transform of a function � (�) is defined by 

∞ 

�̂ (�) = ∫ 
� (�)e−��� �� 

−∞ 

This is often read as ‘� -hat’. 

Theorem. (Fourier inversion formula.) We can recover the original function � (�) with the Fourier 
inversion formula ∞ 1 �̂ (�)e��� ��. � (�) = 

2� ∫−∞ 

So, the Fourier transform converts a function of � to a function of � and the Fourier inversion con-
verts it back. Of course, everything above is dependent on the convergence of the various integrals. 

Proof. We will not give the proof here. (We may get to it later in the course.) 

Example 9.16. Let {
e−�� for � > 0 

� (�) = , 
0 for � < 0 

where � > 0. Compute �̂ (�) and verify the Fourier inversion formula in this case. 
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Solution: Computing �̂ is easy: For � > 0 
∞ ∞ 1 �̂ (�) = ∫ 
� (�)e−��� �� = ∫ 

e−��e−��� �� = (recall � > 0). 
� + �� −∞ 0 

We should first note that the inversion integral converges. To avoid distraction we show this at the 
end of this example. 

Now, let 
1 �(�) = 

� + �� 
� Note that �̂ (�) = �(�) and |�(�)| < |�| for large |�|. 

To verify the inversion formula we consider the cases � > 0 and � < 0 separately. For � > 0 we use 
the standard contour. 

Re(z)

Im(z)

x1−x2

i(x1 + x2) C1

C2

C3

C4

Theorem 9.2(a) implies that 

lim 
�1→∞, �2→∞ ∫�1+�2+�3 

�(�)e��� �� = 0 (6) 

Clearly 
∞ 

lim 
�1→∞, �2→∞ ∫�4 

�(�)e��� �� = ∫ −∞ 
�̂ (�) �� (7) 

The only pole of �(�)e��� is at � = ��, which is in the upper half-plane. So, applying the residue
theorem to the entire closed contour, we get for large �1, �2: ( ) 

e��� e−�� �(�)e��� �� = 2�� Res , �� = . (8) 
� + �� � ∫�1+�2+�3+�4 

Combining the three equations 6, 7 and 8, we have 
∞ 

−�� �̂ (�) �� = 2�e for � > 0 ∫−∞ 

This shows the inversion formula holds for � > 0. 

For � < 0 we use the contour 

Re(z)

Im(z)

x1−x2

−i(x1 + x2) C1

C2

C3

C4
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Theorem 9.2(b) implies that 

lim �(�)e��� �� = 0 
�1→∞, �2→∞ ∫�1+�2+�3 

Clearly 
∞ 

lim 
1 �(�)e��� �� = 1 �̂ (�) �� 

�1→∞, �2→∞ 2� ∫�4
2� ∫−∞ 

Since, there are no poles of �(�)e��� in the lower half-plane, applying the residue theorem to the entire 
closed contour, we get for large �1, �2: ( ) 

e��� �(�)e��� �� = −2�� Res , �� = 0. 
� + �� ∫�1+�2+�3+�4 

Thus, 
∞ 1 �̂ (�) �� = 0 for � < 0 

2� ∫−∞ 

This shows the inversion formula holds for � < 0. 

Finally, we give the promised argument that the inversion integral converges. By definition 
∞ ∞ e��� �̂ (�)e��� �� = ∫ 

�� ∫ � + �� −∞ −∞ 
∞ � cos(��) + � sin(��) − �� cos(��) + �� sin(��) = ∫−∞ �2 + �2 

�� 

The terms without a factor of � in the numerator converge absolutely because of the �2 in the 
denominator. The terms with a factor of � in the numerator do not converge absolutely. For example, 
since 

� sin(��) 
�2 + �2 

decays like 1∕�, its integral is not absolutely convergent. However, we claim that the integral does
converge conditionally. That is, both limits 

�2 0 � sin(��) � sin(��) lim �� and lim �� 
�2→∞ ∫0 �2 + �2 �1→∞ ∫−�1 

�2 + �2 

exist and are finite. The key is that, as sin(��) alternates between positive and negative arches, the 
� function is decaying monotonically. So, in the integral, the area under each arch adds or 

�2 + �2 

subtracts less than the arch before. This means that as �1 (or �2) grows the total area under the
curve oscillates with a decaying amplitude around some limiting value. 

ω

Total area oscillates with a decaying amplitude. 
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9.9 Solving DEs using the Fourier transform 

Let 
� � = . 
�� 

Our goal is to see how to use the Fourier transform to solve differential equations like 

� (�)� = � (�). 

Here � (�) is a polynomial operator, e.g. 

�2 + 8� + 7�. 

We first note the following formula: 
�̂� (�) = ��� .̂ (9) 

Proof. This is just integration by parts: 
∞ 

�̂� (�) = ∫ 
� ′(�)e−��� �� 

−∞ 
∞ 

� (�)e−��� −��� �� = ∞ � (�)(−��e |−∞ − ∫−∞ 
∞ 

= �� ∫ 
� (�)e−��� �� 

−∞ 

= ���̂ (�) QED 

In the third line we assumed that � decays so that � (∞) = � (−∞) = 0. 

It is a simple extension of Equation 9 to see 

(�̂ (�)� )(�) = � (��)� .̂ 

We can now use this to solve some differential equations. 

Example 9.17. Solve the equation {
e−�� if � > 0 

� ′′(�) + 8� ′(�) + 7�(�) = � (�) = 
0 if � < 0 

Solution: In this case, we have 
� (�) = �2 + 8� + 7�, 

so 
� (�) = �2 + 8� + 7 = (� + 7)(� + 1). 

The DE 
� (�)� = � (�) 

transforms to 
� (��)�̂  = � .̂ 
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Using the Fourier transform of � found in Example 9.16 we have 

�̂  1 �̂(�) = = 
� (��) (� + ��)(7 + ��)(1 + ��)

. 

Fourier inversion says that 
∞ 1 �(�)e��� �� �(�) = ̂ 

2� ∫−∞ 

As always, we want to extend �̂  to be function of a complex variable �. Let’s call it �(�): 

1 �(�) = 
(� + ��)(7 + ��)(1 + ��)

. 

Now we can proceed exactly as in Example 9.16. We know |�(�)| < �∕|�|3 for some constant � . 
Thus, the conditions of Theorem 9.2 are easily met. So, just as in Example 9.16, we have: 

For � > 0, e��� is bounded in the upper half-plane, so we use the contour below on the left. 
∞ 1 �(�) = 

1 �̂(�)e��� �� = lim �(�)e��� �� 
2� ∫ 2� �1→∞, �2→∞ ∫�4 −∞ 

1 �(�)e��� �� = lim 
2� �1→∞, �2→∞ ∫�1+�2+�3+�4 

= � 
∑ 

residues of e����(�) in the upper half-plane 

The poles of e����(�) are at 
��, 7�, �. 

These are all in the upper half-plane. The residues are respectively, 

e−�� e−7� e−� 
�(7 − �)(1 − �)

, 
�(� − 7)(−6)

, 
�(� − 1)(6) 

Thus, for � > 0 we have 

e−�� e−7� e−� �(�) = − + 
(7 − �)(1 − �) (� − 7)(6) (� − 1)(6)

. 

Re(z)

Im(z)

x1−x2

i(x1 + x2) C1

C2

C3

C4

Contour for � > 0 

Re(z)

Im(z)

x1−x2

−i(x1 + x2) C1

C2

C3

C4

Contour for � < 0 
More briefly, when � < 0 we use the contour above on the right. We get the exact same string of
equalities except the sum is over the residues of e����(�) in the lower half-plane. Since there are no 
poles in the lower half-plane, we find that 

�̂(�) = 0 
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when � < 0. 

Conclusion (reorganizing the signs and order of the terms): {
0 for � < 0 

�(�) = e−�� e−7� e−� + − for � > 0. (7−�)(1−�) (7−�)(6) (1−�)(6) 

Note. Because |�(�)| < �∕|�|3, we could replace the rectangular contours by semicircles to com-
pute the Fourier inversion integral. 

Example 9.18. Consider {
e−�� if � > 0 

� ′′ + � = � (�) = 
0 if � < 0. 

Find a solution for � > 0. 

Solution: We work a little more quickly than in the previous example. 

Taking the Fourier transform we get 

�̂ (�) �̂ (�) 1 �̂(�) = = = . 
� (��) 1 − �2 (� + ��)(1 − �2) 

(In the last expression, we used the known Fourier transform of � .) 

As usual, we extend �̂(�) to a function of �: 

1 �(�) = . 
(� + ��)(1 − �2) 

This has simple poles at 
−1, 1, ��. 

Since some of the poles are on the real axis, we will need to use an indented contour along the real
axis and use principal value to compute the integral. 

The contour is shown below. We assume each of the small indents is a semicircle with radius �. The 
big rectangular path from (�, 0) to (−�, 0) is called ��. 

Re(z)

Im(z)

1−1

ai

C1 C3 C5

CR

−C2 −C4

−R R

2Ri
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For � > 0 the function e����(�) < �∕|�|3 in the upper half-plane. Thus, we get the following limits: 

e����(�) �� = 0 lim (Theorem 9.2(b)) 
�→∞ ∫�� 

e����(�) �� = �� Res(e����(�), −1) lim (Theorem 9.14) 
�→∞, �→0 ∫�2 

e����(�) �� = �� Res(e����(�), 1) lim (Theorem 9.14) 
�→∞, �→0 ∫�4 

∞ 

e����(�) �� = p.v. ∫ 
�(�)e��� �� lim ̂ 

�→∞, �→0 ∫�1+�3+�5 −∞ 

Putting this together with the residue theorem we have 

∞ 

e����(�) �� = p.v. ∫ 
�(�)e��� �� − �� Res(e����(�), −1) − �� Res(e����(�), 1) lim ̂ 

�→∞, �→0 ∫�1−�2+�3−�4+�5+�� −∞ 

= 2�� Res(e���, ��). 

All that’s left is to compute the residues and do some arithmetic. We don’t show the calculations,
but give the results 

e−�� Res(e����(�), −1) = 
2(� − �) 

e�� Res(e����(�), 1) = −
2(� + �) 

e−�� Res(e����(�), ��) = − 
�(1 + �2) 

We get, for � > 0, 
∞ 1 �(�) = p.v. ∫ 
�̂(�)e��� �� 

2� −∞ 
� Res(e����(�), −1) + 

� Res(e����(�), 1) + � Res(e����(�), ��) = 
2 2 
�−�� � 1 = + sin(�) − cos(�). 
1 + �2 1 + �2 1 + �2 
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