18.04 Problem Set 2, Spring 2018

Calendar

M Feb. 12: Reading: Topic 2 sections 1-5
W Feb. 14: Reading: Topic 2 sections 6-9
R Feb. 15: Recitation
F Feb. 16: Reading: Review of 18.02

Coming next

Feb. 20-23: Analytic functions; Cauchy's theorem

Problem 1. (20: 10,10 points)
(a) Show that $\cos (z)$ is an analytic for all z, i.e. it's an entire function. Compute its derivative and show it equals $-\sin (z)$.
(b) Give the region where $\cot (z)$ is analytic. Compute its derivative.

Problem 2. (20: 10,10 points)
(a) Let $P(z)=\left(z-r_{1}\right)\left(z-r_{2}\right) \ldots\left(z-r_{n}\right)$. Show that $\frac{P^{\prime}(z)}{P(z)}=\sum_{j=1}^{n} \frac{1}{z-r_{j}}$

Suggestion: try $n=2$ and $n=3$ first.
(b) Compute and simplify $\frac{d}{d z}\left(\frac{a z+b}{c z+d}\right)$.

What happens when $a d-b c=0$ and why?
Problem 3. (10 points)
Why does $\log \left(e^{z}\right)$ not always equal z ?
Hint: This is true for any branch of log. Start with the principal branch.
Problem 4. (20: 10,10 points)
(a) Let $f(z)$ be analytic in a D a disk centered at the origin. Show that $F_{1}(z)=\overline{f(\bar{z})}$ is analytic in D.
(b) Let $f(z)$ be as in part (a). Show that $F_{2}(z)=f(\bar{z})$ is not analytic unless f is constant. Hint for both parts: Use the Cauchy-Riemann equations.

Problem 5. (10 points)
Let $f(z)=|z|^{2}$. Show the $\frac{d f}{d z}$ exists at $z=0$, but nowhere else.
Problem 6. (10 points)
Using the principal branch of \log give a region where $\sqrt{z^{2}-1}$ is analytic.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

