18.04 Problem Set 3, Spring 2018

Calendar

T Feb. 20: Finish topic 2 notes
W Feb. 21: Reading: Review of 18.02
R Feb. 22: Recitation
F Feb. 23: Reading: Topic 3 notes
Coming next
Feb. 26-Mar. 2: Cauchy's theorem, Cauchy's integral formula

Problem 1. (30: $10,10,10$ points)
(a) Compute $\int_{C} \frac{1}{z} d z$, where C is the unit circle around the point $z=2$ traversed in the counterclockwise direction.
(b) Show that $\int_{C} z^{2} d z=0$ for any simple closed curve C in 2 ways.
(i) Apply the fundamental theorem of complex line integrals
(ii) Write out both the real and imaginary parts of the integral as 18.02 integrals of the form $\int_{C} M d x+N d y$ and apply Green's theorem to each part.
(c) Consider the integral $\int_{C} \frac{1}{z} d z$, where C is the unit circle. Write out both the real and imaginary parts as 18.02 integrals, i.e. of the form $\int_{C} M(x, y) d x+N(x, y) d y$.

Problem 2. (20: 10,10 points)
(a) Let C be the unit circle traversed counterclockwise. Directly from the definition of complex line integrals compute $\int_{C} \bar{z} d z$.
Is this the same as $\int_{C} z d z$?
(b) Compute $\int_{C} \bar{z}^{2} d z$ for each of the following paths from 0 to $1+i$.
(i) The straight line connecting the two points.
(ii) The path consisting of the line from 0 to 1 followed by the line from 1 to $1+i$.

Problem 3. (20: 10,10 points)
Let C be the circle of radius 1 centered at $z=-4$. Let $f(z)=1 /(z+4)$. and consider the line integral

$$
I=\int_{C} f(z) d z
$$

(a) Does Cauchy's Theorem imply that $I=0$? Why or why not?
(b) Parametrize the curve C and carry out the calculation to find the value of I. Check that the answer confirms your excellent reasoning in part (a).

Problem 4. (10 points)
Let C be a path from the point $z_{1}=0$ to the point $z_{2}=1+i$. Find

$$
I=\int_{C} z^{9}+\cos (z)-\mathrm{e}^{z} d z
$$

in the form $I=a+i b$. Justify your steps.
Problem 5. (15: 10,5 points)
(a) Compute $\int_{C} z^{1 / 3} d z$, where C the unit semicircle shown. Use the principal branch of $\arg (z)$ to compute the cube root.

(b) Repeat using the branch with $\pi \leq \arg (z)<3 \pi$.

Problem 6. (10 points)
Use the fundamental theorem for complex line integrals to show that $f(z)=1 / z$ cannot possibly have an antiderivative defined on $\mathbf{C}-\{0\}$.

Problem 7. (10 points)
Does $\operatorname{Re}\left(\int_{C} f(z) d z\right)=\int_{C} \operatorname{Re}(f(z)) d z$? If so prove it, if not give a counterexample.
Problem 8. (10 points)
Are the following simply connected?
(i) The punctured plane.
(ii) The cut plane: \mathbf{C} - \{nonnegative real axis $\}$.
(iii) The part of the plane inside a circle.
(iv) The part of the plane outside a circle.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

