18.04 Problem Set 3, Spring 2018 Solutions

Problem 1. (30: $10,10,10$ points)
(a) Compute $\int_{C} \frac{1}{z} d z$, where C is the unit circle around the point $z=2$ traversed in the counterclockwise direction.
Cauchy's theorem says that inside a simply connected region the integral of an analytic function over a closed curve is 0 . Since $1 / z$ is clearly analytic in a simply connected region containing C and its interior (see figure), Cauchy's theorem applies.
Solution: $\int_{C} \frac{1}{z} d z=0$.

(b) Show that $\int_{C} z^{2} d z=0$ for any simple closed curve C in 2 ways.
(i) Apply the fundamental theorem of complex line integrals
(ii) Write out both the real and imaginary parts of the integral as 18.02 integrals of the form $\int_{C} M d x+N d y$ and apply Green's theorem to each part.
(i) Let $f(z)=z^{2}$. We know this has the antiderivative $F(z)=z^{3} / 3$. There fore $\int_{C} f(z) d z=$ $F\left(z_{1}\right)-F\left(z_{0}\right)$, where z_{0} and z_{1} are the endpoints of the curve C. Since these points coincide, the integral must be 0 .
(ii) This requires some algebraic manipulation. Let $z=x+i y$. Then

$$
z^{2}=(x+i y)^{2}=x^{2}-y^{2}+i 2 x y
$$

So,

$$
z^{2} d z=z^{2}(d x+i d y)=\left(\left(x^{2}-y^{2}\right) d x-2 x y d y\right)+i\left(2 x y d x+\left(x^{2}-y^{2}\right) d y\right) .
$$

It is clear that everything here is defined and differentiable on all of \mathbf{R}^{2}. So we can apply Green's theorem to each part of the integral. (Here R is the interior of the simple closed curve C.)
Real part: $\int_{C}\left(x^{2}-y^{2}\right) d x-2 x y d y$. So, $M=x^{2}-y^{2}, N=-2 x y$. Taking the curl we get $N_{x}-M_{y}=-2 y-(-2 y)=0$. Therefore, by Green's theorem the integral is 0 .
Imaginaray part: We have $M=2 x y, N=x^{2}+y^{2}$. So, $N_{x}-M_{y}=2 x-2 x=0$. Again, Green's theorem implies the integral is 0 .
(c) Consider the integral $\int_{C} \frac{1}{z} d z$, where C is the unit circle. Write out both the real and imaginary parts as 18.02 integrals, i.e. of the form $\int_{C} M(x, y) d x+N(x, y) d y$.

We have $\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}$, So
$\int_{C} \frac{1}{z} d z=\int_{C} \frac{x-i y}{x^{2}+y^{2}}(d x+i d y)=\int_{c} \frac{x}{x^{2}+y^{2}} d x+\frac{y}{x^{2}+y^{2}} d y+i \int_{C} \frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y$
Note that the real part uses the radial vector field and the imaginary part uses the tangential (to the circle) vector field.

Problem 2. (20: 10,10 points)
(a) Let C be the unit circle traversed counterclockwise. Directly from the definition of complex line integrals compute $\int_{C} \bar{z} d z$.
Is this the same as $\int_{C} z d z$?
Parametrize C : $\gamma(t)=\mathrm{e}^{i t}$, with $0 \leq t \leq 2 \pi$. So, $\gamma^{\prime}(t)=i \mathrm{e}^{i t}$. Putting this into the integral gives

$$
\int_{C} \bar{z} d z=\int_{0}^{2 \pi} \overline{\mathrm{e}^{i t}} i \mathrm{e}^{i t} d t=\int_{0}^{2 \pi} i d t=2 \pi i .
$$

This is not the same as $\int_{C} z d z$ which equals 0 .
(b) Compute $\int_{C} \bar{z}^{2} d z$ for each of the following paths from 0 to $1+i$.
(i) The straight line connecting the two points.
(ii) The path consisting of the line from 0 to 1 followed by the line from 1 to $1+i$.
(i) Parametrize the path: $\gamma(t)=t(1+i)$, with $0 \leq t \leq 1$. So, $\gamma^{\prime}(t)=1+i$. For $z=\gamma(t)$ we have $\bar{z}^{2}=t^{2}(1-i)^{2}=-2 i t^{2}$. Putting all this into the intgeral gives

$$
\int_{\gamma} \bar{z}^{2} d z=\int_{0}^{1} t^{2}(-2 i)(1+i) d t=\frac{2}{3}(1-i) .
$$

(ii) We have two curves: $\gamma_{1}(t)=t$, for $0 \leq t \leq 1$. So, $\gamma_{1}^{\prime}(t)=1$. On $\gamma_{1}, \bar{z}^{2}=t^{2}$. $\gamma_{2}(t)=1+i t$, for $0 \leq t \leq 1$. So, $\gamma_{2}^{\prime}(t)=i$. On $\gamma_{2}, \bar{z}^{2}=(1-i t)^{2}=\left(1-t^{2}\right)-2 i t$. Integrating each piece separately gives

$$
\begin{aligned}
& \int_{\gamma_{1}} \bar{z}^{2} d z=\int_{0}^{1} t^{2} d t=\frac{1}{3} \\
& \int_{\gamma_{2}} \bar{z}^{2} d z=\int_{0}^{1}\left(\left(1-t^{2}\right)-2 i t\right)(i d t)=1+\frac{2}{3} i .
\end{aligned}
$$

So the integral over the entire path is $\int_{\gamma_{1}+\gamma_{2}} \bar{z}^{2} d z=\frac{1}{3}+1+\frac{2}{3} i=\frac{4}{3}+\frac{2}{3} i$.

Paths for $2 \mathrm{~b}(\mathrm{i})$ and $2 \mathrm{~b}(\mathrm{ii})$.

Problem 3. (20: 10,10 points)
Let C be the circle of radius 1 centered at $z=-4$. Let $f(z)=1 /(z+4)$. and consider the line integral

$$
I=\int_{C} f(z) d z
$$

(a) Does Cauchy's Theorem imply that $I=0$? Why or why not?

No. $f(z)=1 /(z+4)$ is not analytic at $z=-4$. Since this is in the interior of C the function is not analytic on a simply connected region containing C, so Cauchy's theorem does not apply.

The singularity $z=-4$ is inside the curve C.
(b) Parametrize the curve C and carry out the calculation to find the value of I. Check that the answer confirms your excellent reasoning in part (a).
Parametrize $C: \gamma(t)=-4+\mathrm{e}^{i t}$, with $0 \leq t \leq 2 \pi$. So, $\gamma^{\prime}(t)=i \mathrm{e}^{i t}$. Now compute the integral:

$$
\int_{\gamma} \frac{1}{z+4} d z=\int_{0}^{2 \pi} \frac{1}{\mathrm{e}^{i t}} i \mathrm{e}^{i t} d t=\int_{0}^{2 \pi} i d t=2 \pi i .
$$

Problem 4. (10 points)
Let C be a path from the point $z_{1}=0$ to the point $z_{2}=1+i$. Find

$$
I=\int_{C} z^{9}+\cos (z)-\mathrm{e}^{z} d z
$$

in the form $I=a+i b$. Justify your steps.
We'll apply the fundamental theorem. First, we know that $f(z)=z^{9}+\cos (z)-\mathrm{e}^{z}$ has
antiderivative $F(z)=\frac{z^{10}}{10}+\sin (z)-\mathrm{e}^{z}$. So, by the fundamental theorem

$$
\int_{\gamma} f(z) d z=F(1+i)-F(0)=\frac{(1+i)^{10}}{10}+\sin (1+i)-\mathrm{e}^{1+i} .
$$

There is not much purpose in trying to simplify this expression.

Problem 5. (15: 10,5 points)
(a) Compute $\int_{C} z^{1 / 3} d z$, where C the unit semicircle shown. Use the principal branch of $\arg (z)$ to compute the cube root.

We parametrize the curve being sure to put the polar angle in the proper branch of arg: $\gamma(t)=\mathrm{e}^{i t}$, where $0 \leq t \leq \pi$. So,

$$
\int_{\gamma} z^{1 / 3} d z=\int_{0}^{\pi} \mathrm{e}^{i t / 3} \mathrm{e}^{i t}=i \int_{0}^{\pi} \mathrm{e}^{i 4 t / 3} d t=\left.\frac{3}{4} \mathrm{e}^{i 4 t / 3}\right|_{0} ^{\pi}=\frac{3}{4}\left(\mathrm{e}^{i 4 \pi / 3}-1\right)=\frac{3}{8}(-3-i \sqrt{3}) .
$$

(b) Repeat using the branch with $\pi \leq \arg (z)<3 \pi$.

This is the same as part (a) except we need to use $2 \pi \leq t \leq 3 \pi$. So,

$$
\int_{\gamma} z^{1 / 3} d z=\int_{2 \pi}^{3 \pi} \mathrm{e}^{i t / 3} i \mathrm{e}^{i t}=\left.\frac{3}{4} \mathrm{e}^{i t t / 3}\right|_{2 \pi} ^{3 \pi}=\frac{3}{4}\left(1-\mathrm{e}^{i 8 \pi / 3}\right)=\frac{3}{4}\left(1-\mathrm{e}^{i 2 \pi / 3}\right)=\mathrm{e}^{2 \pi / 3} \cdot \operatorname{part}(\mathrm{a}) .
$$

Problem 6. (10 points)
Use the fundamental theorem for complex line integrals to show that $f(z)=1 / z$ cannot possibly have an antiderivative defined on $\mathbf{C}-\{0\}$.
We know that over the unit cirle $\int_{C} \frac{1}{z} d z=2 \pi i$. If $1 / z \mathrm{had}$ an antiderivative on the punctured plane then the fundamental theorem would imply this line integral should be 0 . Since it's not, there is no such antiderivative.

Problem 7. (10 points)
Does $\operatorname{Re}\left(\int_{C} f(z) d z\right)=\int_{C} \operatorname{Re}(f(z)) d z$? If so prove it, if not give a counterexample.
No! There are many counterexamples. Here's one with the function z over the path $\gamma(t)=$ $t(1+i)$, with $0 \leq t \leq 1$. Using the fundamental theorem we have

$$
\int_{\gamma} z d z=\left.\frac{z^{2}}{2}\right|_{0} ^{1+i}=\frac{(1+i)^{2}}{2}=i
$$

The real part of this is 0 .
On the other hand, $\operatorname{Re}(z)=x$. This does not have an antiderivative, so we can't use the fundamental theorem. Therefore we compute it directly:

$$
\int_{\gamma} x d z=\int_{0}^{1} t(1+i) d t=\frac{1}{2}+i \frac{1}{2}
$$

The real part of this is $1 / 2$, which is not the same as the previous real part.

Problem 8. (10 points)
Are the following simply connected?
(i) The punctured plane.
(ii) The cut plane: $\mathbf{C}-\{$ nonnegative real axis $\}$.
(iii) The part of the plane inside a circle.
(iv) The part of the plane outside a circle.
(i) No, not simply connected. There is a hole at the origin. Equivalently, a loop around 0 cannot be contracted to a point.
(ii) Yes, simply connected. Since the cut goes to infinity there are no wholes. Equivalently, every curve in the cut plane can be contracted to a point.
(iii) Yes, a disk is simply connected.
(iv) No, there is a big hole left in the plane by the disk that's been removed.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

