
18.04 Problem Set 3, Spring 2018 Solutions 

Problem 1. (30: 10,10,10 points) 

(a) Compute ∫ 𝑧
1 𝑑𝑧, where 𝐶 is the unit circle around the point 𝑧 = 2 traversed in the 

𝐶
counterclockwise direction. 
Cauchy’s theorem says that inside a simply connected region the integral of an analytic 
function over a closed curve is 0. Since 1/𝑧 is clearly analytic in a simply connected region 
containing 𝐶 and its interior (see figure), Cauchy’s theorem applies. 

Solution: ∫ 𝑧
1 𝑑𝑧 = 0. 

𝐶 
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(b) Show that ∫𝐶 
𝑧2 𝑑𝑧 = 0 for any simple closed curve 𝐶 in 2 ways. 

(i) Apply the fundamental theorem of complex line integrals 

(ii) Write out both the real and imaginary parts of the integral as 18.02 integrals of the form 
∫𝐶 

𝑀 𝑑𝑥 + 𝑁 𝑑𝑦 and apply Green’s theorem to each part. 

(i) Let 𝑓(𝑧) = 𝑧2. We know this has the antiderivative 𝐹 (𝑧) = 𝑧3/3. There fore ∫𝐶 
𝑓(𝑧) 𝑑𝑧 = 

𝐹 (𝑧1)−𝐹 (𝑧0), where 𝑧0 and 𝑧1 are the endpoints of the curve 𝐶. Since these points coincide, 
the integral must be 0. 
(ii) This requires some algebraic manipulation. Let 𝑧 = 𝑥 + 𝑖𝑦. Then 

𝑧2 = (𝑥 + 𝑖𝑦)2 = 𝑥2 − 𝑦2 + 𝑖2𝑥𝑦 

So, 

𝑧2 𝑑𝑧 = 𝑧2 (𝑑𝑥 + 𝑖 𝑑𝑦) = ((𝑥2 − 𝑦2) 𝑑𝑥 − 2𝑥𝑦 𝑑𝑦) + 𝑖 (2𝑥𝑦 𝑑𝑥 + (𝑥2 − 𝑦2) 𝑑𝑦) . 
It is clear that everything here is defined and differentiable on all of R2. So we can apply 
Green’s theorem to each part of the integral. (Here 𝑅 is the interior of the simple closed 
curve 𝐶.) 

Real part: ∫(𝑥2 − 𝑦2) 𝑑𝑥 − 2𝑥𝑦 𝑑𝑦. So, 𝑀 = 𝑥2 − 𝑦2, 𝑁 = −2𝑥𝑦. Taking the curl we get
𝐶 

𝑁𝑥 − 𝑀𝑦 = −2𝑦 − (−2𝑦) = 0. Therefore, by Green’s theorem the integral is 0. 
Imaginaray part: We have 𝑀 = 2𝑥𝑦, 𝑁 = 𝑥2 + 𝑦2. So, 𝑁𝑥 − 𝑀𝑦 = 2𝑥 − 2𝑥 = 0. Again, 
Green’s theorem implies the integral is 0. 

(c) Consider the integral ∫ 𝑧
1 𝑑𝑧, where 𝐶 is the unit circle. Write out both the real and 

𝐶 
imaginary parts as 18.02 integrals, i.e. of the form ∫𝐶 

𝑀(𝑥, 𝑦) 𝑑𝑥 + 𝑁(𝑥, 𝑦) 𝑑𝑦. 

1 



2 18.04 Problem Set 3, Spring 2018 Solutions 

1 1 𝑥 − 𝑖𝑦 We have = = 𝑧 𝑥 + 𝑖𝑦 𝑥2 + 𝑦2 
, So 

𝑥 − 𝑖𝑦 ∫ 𝑧
1 𝑑𝑧 = ∫ 𝑥2 + 𝑦2 

(𝑑𝑥+𝑖 𝑑𝑦) = 
𝐶 𝐶 

𝑥 𝑦 −𝑦 𝑥 ∫𝑥2 + 𝑦2 
𝑑𝑥 + 𝑥2 + 𝑦2 

𝑑𝑦 + 𝑖 ∫ 𝑥2 + 𝑦2 
𝑑𝑥 + 𝑥2 + 𝑦2 

𝑑𝑦 
𝑐 𝐶 

Note that the real part uses the radial vector field and the imaginary part uses the tangential 
(to the circle) vector field. 

Problem 2. (20: 10,10 points) 
(a) Let 𝐶 be the unit circle traversed counterclockwise. Directly from the definition of 
complex line integrals compute ∫ 𝑧𝑑𝑧. 

𝐶 

Is this the same as ∫ 𝑧 𝑑𝑧? 
𝐶 

Parametrize 𝐶: 𝛾(𝑡) = e𝑖𝑡, with 0 ≤ 𝑡 ≤ 2𝜋. So, 𝛾′(𝑡) = 𝑖e𝑖𝑡. Putting this into the integral 
gives 

2𝜋 2𝜋 

∫ 𝑧 𝑑𝑧 = ∫ e𝑖𝑡 𝑖 e𝑖𝑡 𝑑𝑡 = ∫ 𝑖 𝑑𝑡 = 2𝜋𝑖. 
𝐶 0 0 

This is not the same as ∫ 𝑧 𝑑𝑧 which equals 0. 
𝐶 

(b) Compute ∫ 𝑧2 𝑑𝑧 for each of the following paths from 0 to 1 + 𝑖. 
𝐶 

(i) The straight line connecting the two points. 
(ii) The path consisting of the line from 0 to 1 followed by the line from 1 to 1 + 𝑖. 
(i) Parametrize the path: 𝛾(𝑡) = 𝑡(1 + 𝑖), with 0 ≤ 𝑡 ≤ 1. So, 𝛾′(𝑡) = 1 + 𝑖. 
For 𝑧 = 𝛾(𝑡) we have 𝑧2 = 𝑡2(1 − 𝑖)2 = −2𝑖 𝑡2. Putting all this into the intgeral gives 

1
∫𝑧2 𝑑𝑧 = ∫ 𝑡2(−2𝑖)(1 + 𝑖) 𝑑𝑡 = 3

2(1 − 𝑖). 
𝛾 0 

(ii) We have two curves: 𝛾1(𝑡) = 𝑡, for 0 ≤ 𝑡 ≤ 1. So, 𝛾1
′(𝑡) = 1. On 𝛾1, 𝑧2 = 𝑡2.

𝛾2(𝑡) = 1+𝑖𝑡, for 0 ≤ 𝑡 ≤ 1. So, 𝛾2
′(𝑡) = 𝑖. On 𝛾2, 𝑧2 = (1−𝑖𝑡)2 = (1−𝑡2)−2𝑖𝑡. Integrating 

each piece separately gives 

1∫ 𝑧2 𝑑𝑧 = ∫
1 

𝑡2 𝑑𝑡 = 3. 
𝛾1 0 

1
∫ 𝑧2 𝑑𝑧 = ∫ ((1 − 𝑡2) − 2𝑖𝑡)(𝑖 𝑑𝑡) = 1 + 3

2 𝑖. 
𝛾2 0 

1 4So the integral over the entire path is ∫ 𝑧2 𝑑𝑧 = 3 + 1 + 3
2 𝑖 = 3 

+ 
2
3 

𝑖. 
𝛾1+𝛾2 
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Paths for 2b(i) and 2b(ii). 

Problem 3. (20: 10,10 points) 
Let 𝐶 be the circle of radius 1 centered at 𝑧 = −4. Let 𝑓(𝑧) = 1/(𝑧 + 4). and consider the 
line integral 

𝐼 = ∫ 𝑓(𝑧) 𝑑𝑧. 
𝐶 

(a) Does Cauchy’s Theorem imply that 𝐼 = 0? Why or why not? 

No. 𝑓(𝑧) = 1/(𝑧+4) is not analytic at 𝑧 = −4. Since this is in the interior of 𝐶 the function 
is not analytic on a simply connected region containing 𝐶, so Cauchy’s theorem does not 
apply. 

(b) Parametrize the curve 𝐶 and carry out the calculation to find the value of 𝐼. Check 
that the answer confirms your excellent reasoning in part (a). 
Parametrize 𝐶: 𝛾(𝑡) = −4 + e𝑖𝑡, with 0 ≤ 𝑡 ≤ 2𝜋. So, 𝛾′(𝑡) = 𝑖e𝑖𝑡. Now compute the 
integral: 

2𝜋 2𝜋 

∫ 1 
e 
1
𝑖𝑡 

𝑖e𝑖𝑡 𝑑𝑡 = ∫ 𝑖 𝑑𝑡 = 2𝜋𝑖. 𝑧 + 4 
𝑑𝑧 = ∫ 

𝛾 0 0 

Re

Im
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The singularity 𝑧 = −4 is inside the curve 𝐶. 

Problem 4. (10 points) 
Let 𝐶 be a path from the point 𝑧1 = 0 to the point 𝑧2 = 1 + 𝑖. Find 

𝐼 = ∫ 𝑧9 + cos(𝑧) − e𝑧 𝑑𝑧 
𝐶 

in the form 𝐼 = 𝑎 + 𝑖𝑏. Justify your steps. 
We’ll apply the fundamental theorem. First, we know that 𝑓(𝑧) = 𝑧9 + cos(𝑧) − e𝑧 has 
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antiderivative 𝐹 (𝑧) = 𝑧
10
10 + sin(𝑧) − e𝑧. So, by the fundamental theorem 

(1 + 𝑖)10
∫𝑓(𝑧) 𝑑𝑧 = 𝐹(1 + 𝑖) − 𝐹(0) = + sin(1 + 𝑖) − e1+𝑖. 

𝛾 10 

There is not much purpose in trying to simplify this expression. 

Problem 5. (15: 10,5 points) 
(a) Compute ∫𝐶 

𝑧1/3 𝑑𝑧, where 𝐶 the unit semicircle shown. Use the principal branch of 
arg(𝑧) to compute the cube root. 

Re 𝑧 

Im 𝑧 

𝐶 

1−1 

We parametrize the curve being sure to put the polar angle in the proper branch of arg: 
𝛾(𝑡) = e𝑖𝑡, where 0 ≤ 𝑡 ≤ 𝜋. So, 

𝜋 𝜋 𝜋 

∫𝑧1/3 𝑑𝑧 = ∫ e𝑖𝑡/3𝑖e𝑖𝑡 = 𝑖 ∫ e𝑖4𝑡/3 𝑑𝑡 = 4
3 e𝑖4𝑡/3∣ = 4

3 (e𝑖4𝜋/3 − 1) = 
𝛾 0 0 0 

3 
8(−3 − 𝑖

√
3). 

(b) Repeat using the branch with 𝜋 ≤ arg(𝑧) < 3𝜋. 
This is the same as part (a) except we need to use 2𝜋 ≤ 𝑡 ≤ 3𝜋. So, 

3𝜋 3𝜋 3 3 3∫𝑧1/3 𝑑𝑧 = ∫ e𝑖𝑡/3𝑖e𝑖𝑡 = 4e𝑖4𝑡/3∣ = 4 
(1 − e𝑖8𝜋/3) = 4 

(1 − e𝑖2𝜋/3) = e2𝜋/3 ⋅ part (a). 
𝛾 2𝜋 2𝜋 

Problem 6. (10 points) 
Use the fundamental theorem for complex line integrals to show that 𝑓(𝑧) = 1/𝑧 cannot 
possibly have an antiderivative defined on C − {0}. 

We know that over the unit cirle ∫ 
1
𝑧 

𝑑𝑧 = 2𝜋𝑖. If 1/𝑧 had an antiderivative on the 
𝐶

punctured plane then the fundamental theorem would imply this line integral should be 0. 
Since it’s not, there is no such antiderivative. 

Problem 7. (10 points) 
Does Re (∫𝐶 

𝑓(𝑧) 𝑑𝑧) = ∫𝐶 
Re(𝑓(𝑧)) 𝑑𝑧? If so prove it, if not give a counterexample. 

No! There are many counterexamples. Here’s one with the function 𝑧 over the path 𝛾(𝑡) = 
𝑡(1 + 𝑖), with 0 ≤ 𝑡 ≤ 1. Using the fundamental theorem we have 

𝑧2 1+𝑖 (1 + 𝑖)2
∫𝑧 𝑑𝑧 = ∣ = = 𝑖.2 2𝛾 0 
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The real part of this is 0. 
On the other hand, Re(𝑧) = 𝑥. This does not have an antiderivative, so we can’t use the 
fundamental theorem. Therefore we compute it directly: 

1 1∫𝑥 𝑑𝑧 = ∫ 𝑡(1 + 𝑖) 𝑑𝑡 = 2 + 𝑖1 
2. 

𝛾 0 

The real part of this is 1/2, which is not the same as the previous real part. 

Problem 8. (10 points) 
Are the following simply connected? 
(i) The punctured plane. 
(ii) The cut plane: C − {nonnegative real axis}. 
(iii) The part of the plane inside a circle. 
(iv) The part of the plane outside a circle. 
(i) No, not simply connected. There is a hole at the origin. Equivalently, a loop around 0 
cannot be contracted to a point. 
(ii) Yes, simply connected. Since the cut goes to infinity there are no wholes. Equivalently, 
every curve in the cut plane can be contracted to a point. 
(iii) Yes, a disk is simply connected. 
(iv) No, there is a big hole left in the plane by the disk that’s been removed. 
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