
18.04 Problem Set 4, Spring 2018 Solutions 

Problem 1. (20: 5,5,5,5 points) 
(a) Use Cauchy’s integral formula to compute 

sin(𝜋𝑧2) + cos(𝜋𝑧2)∫ 𝑑𝑧, 
𝐶 (𝑧 − 1)(𝑧 − 2) 

where 𝐶 is the circle of radius 4: |𝑧| = 4. 
sin(𝜋𝑧2) + cos(𝜋𝑧2)Let 𝑓(𝑧) = . There are two singularities of 𝑓 inside the contour 𝐶. Let’s(𝑧 − 1)(𝑧 − 2) 

use the trick of splitting 𝐶 into two closed contours, each of which surrounds exactly on 
singularity. 
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Im(z)
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Split |𝑧| = 4 into two contours. 
We have 

∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑓(𝑧) 𝑑𝑧 + ∫ 𝑓(𝑧) 𝑑𝑧. 
𝐶 𝐶1+𝐶3−𝐶3+𝐶2 𝐶1+𝐶3 −𝐶3+𝐶2 

We compute each integral separately. 
sin(𝜋𝑧2) + cos(𝜋𝑧2)𝐶1 + 𝐶3: This contour contains the singularity 𝑧 = 2. We let 𝑔(𝑧) = ,(𝑧 − 1) 

so 𝑓(𝑧) = 𝑔(𝑧)/(𝑧 − 2). Now, 𝑔(𝑧) is analytic on and inside 𝐶1 + 𝐶3 so, by Cauchy’s integral 
formula we have 

𝑔(𝑧) ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑧 − 2 
𝑑𝑧 = 2𝜋𝑖𝑔(2) = 2𝜋𝑖. 

𝐶1+𝐶3 𝐶1+𝐶3 

sin(𝜋𝑧2) + cos(𝜋𝑧2)−𝐶3 + 𝐶2: This contour contains the singularity 𝑧 = 1. We let 𝑔(𝑧) = ,(𝑧 − 2) 
so 𝑓(𝑧) = 𝑔(𝑧)/(𝑧 − 2). Now, 𝑔(𝑧) is analytic on and inside −𝐶3 + 𝐶2 so, by Cauchy’s 
integral formula we have 

𝑔(𝑧) ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑧 − 1 
𝑑𝑧 = 2𝜋𝑖𝑔(1) = 2𝜋𝑖. 

−𝐶3+𝐶2 −𝐶3+𝐶2 

Add the results together we get: the integral in the question equals 4𝜋𝑖. 

1 
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Note. We could have done this with partial fractions. In essence, that is what we’ve 
done. The method shown will be formalized and made easier once we’ve learned the residue 
theorem. 

𝑧2 

(b) Compute ∫ 𝑧2 + 1 
𝑑𝑧, where 𝐶 is the circle of radius 1 centered at 𝑧 = 𝑖. 

𝐶 

𝑧2 𝑧2 

Let 𝑓(𝑧) = (𝑧 + 𝑖)(𝑧 − 𝑖) . The only singularity of 𝑓 inside 𝐶 is at 𝑧 = −𝑖.𝑧2 + 1 
= 

Re(z)

Im(z)
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𝑧2 

We let 𝑔(𝑧) = 𝑧 + 𝑖 , so 𝑓(𝑧) = 𝑔(𝑧)/(𝑧 − 𝑖). By Cauchy’s integral formula we have 

𝑔(𝑧) ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑧 − 𝑖 𝑑𝑧 = 2𝜋𝑖𝑔(𝑖) = −𝜋 . 
𝐶 𝐶 

(c) Let 𝐶 be the circle of radius 2: |𝑧| = 2. Use Cauchy’s integral formula to compute 

∫ 𝑧2 

𝑧
− 1 

𝑑𝑧. 
𝐶 

Be careful: 𝑧 is not analytic, but there is a way around this. 
The trick here is that on the curve 𝐶 we have 𝑧 = 4/𝑧. Therefore, 

∫ 𝑧2 

𝑧
− 1 

𝑑𝑧 = ∫ 𝑧(𝑧2
4
− 1) 

𝑑𝑧. 
𝐶 𝐶 

(If you don’t believe this you should parametrize 𝐶 and write out both integrals explicitly. 
You will see they are the same. Of course, this is special to the circle 𝐶. It woudn’t be true 
on every curve.) 

Now, 𝑓(𝑧) = 𝑧(𝑧2
4
− 1) 

has three singularities inside 𝐶: at 𝑧 = 0, ±1. We use our trick of 
dividing 𝐶. This time into three loops. 

Re(z)

Im(z)
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So, ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑓(𝑧) 𝑑𝑧+∫ 𝑓(𝑧) 𝑑𝑧+∫ 𝑓(𝑧) 𝑑𝑧. 
𝐶 𝐶1+𝐶2−𝐶2+𝐶3+𝐶4−𝐶4+𝐶5+𝐶6 𝐿1 𝐿2 𝐿3

Here 𝐿1, 𝐿2 and 𝐿3 are the names of the loops as defined below. We now do the same thing 
as in part (a). We will do it without many comments. 

4First note: 𝑓(𝑧) = 𝑧(𝑧 − 1)(𝑧 + 1) . 

On 𝐿1 = 𝐶1 + 𝐶2: Inside this loop 𝑓 has a singularity at 𝑧 = 1. Let 𝑔(𝑧) = 4
𝑧(𝑧+1) , so 

𝑓(𝑧) = 𝑔(𝑧)/(𝑧 − 1). 
𝑔(𝑧) ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑧 − 1 

= 2𝜋𝑖𝑔(1) = 4𝜋𝑖. 
𝐿1 𝐿1 

On 𝐿2 = −𝐶2 + 𝐶3 + 𝐶4 + 𝐶6: Inside this loop 𝑓 has a singularity at 𝑧 = 0. Let 𝑔(𝑧) = 
4

(𝑧+1)(𝑧−1) , so 𝑓(𝑧) = 𝑔(𝑧)/𝑧. 

𝑔(𝑧) ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ = 2𝜋𝑖𝑔(0) = −8𝜋𝑖. 𝑧 𝐿2 𝐿2 

On 𝐿3 = −𝐶4 + 𝐶5: Inside this loop 𝑓 has a singularity at 𝑧 = −1. Let 𝑔(𝑧) = 4
𝑧(𝑧−1) , so 

𝑓(𝑧) = 𝑔(𝑧)/(𝑧 + 1). 

𝑔(𝑧) ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑧 + 1 
= 2𝜋𝑖𝑔(−1) = 4𝜋𝑖. 

𝐿3 𝐿3 

Totaling the contribution from each loop we have our answer: 4𝜋𝑖 − 8𝜋𝑖 + 4𝜋𝑖 = 0 . 
(d) Let 𝜃 = arg(𝑧) Take 𝐶 to be the wavy contour in the 𝑧-plane described by 0 ≤ arg(𝑧) ≤ 𝜋; 
|𝑧| = 1 − 0.1 cos(100𝜃). Compute the integral ∫ 𝑧2 𝑑𝑧. 

𝐶 

Method 1. Use the antiderivative: 
−0.9𝑧3

∫ 𝑧2 𝑑𝑧 = ∣ = 3𝐶 0.9 

−2(0.9)3. 

Method 2. 𝐶 is not closed so we close it off by adding the straight line 𝐶1 from -1 to 1 
along the 𝑥-axis. 
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Now, by Cauchy’s theorem ∫ 𝑧2 𝑑𝑧 = 0, so 
𝐶+𝐶1 

0.9
∫ 𝑧2 𝑑𝑧 = − ∫ 𝑧2 𝑑𝑧 = − ∫ 𝑥2 𝑑𝑥 = 

𝐶 𝐶1 −0.9 

−2(0.9)3. 

Problem 2. (15: 10,5 points) 
(a) Let 𝑓(𝑧) = 𝑧𝑛, where 𝑛 is a positive integer. By directly computing the integral, show 
that Cauchy’s integral formula holds for 𝑓(𝑧0) and Cauchy’s formula for derivatives holds 
for 𝑓′(𝑧0). 
You may need the binomial formula for expanding (𝑎 + 𝑏)𝑛. As a hint: you may want to 
make a short argument, based on Cauchy’s theorem, reducing the integrals to circles centered 
on the point of interest. 
First 𝑓(𝑧0): Fix 𝑧0 as our point of interest. Suppose 𝐶 is a simple closed curve going 
(counterclockwise) around 𝑧0. Our goal is to show that 

𝑧𝑛 

= 𝑧0
𝑛.2𝜋𝑖 

1 ∫ 𝑧 − 𝑧0𝐶 

By the extended version of Cauchy’s theorem we know 

𝑧𝑛 𝑧𝑛 

∫ = ∫ ,
𝐶 𝑧 − 𝑧0 𝐶𝑟

𝑧 − 𝑧0 

where 𝐶𝑟 is a small circle centered at 𝑧0 and entirely inside 𝐶. This last integral we can 
compute directly. 
Parametrize 𝐶𝑟: 𝛾(𝑡) = 𝑧0 + 𝑟e𝑖𝜃, with 0 ≤ 𝜃 ≤ 2𝜋. 𝛾′(𝜃) = 𝑖𝑟e𝑖𝜃. So, 

𝑧𝑛 2𝜋 (𝑧0 + 𝑟e𝑖𝜃)𝑛 2𝜋 1 1 1𝑑𝑧 = 𝑟e𝑖𝜃 
𝑖𝑟e𝑖𝜃 𝑑𝜃 = (𝑧0 + 𝑟e𝑖𝜃)𝑛 𝑑𝜃 2𝜋𝑖 ∫ 𝑧 − 𝑧0 2𝜋𝑖 ∫ 2𝜋 

∫ 
𝐶𝑟 0 0 

The binomial formula tells us that 

2𝜋 2𝜋 

(𝑧0 + 𝑟e𝑖𝜃)𝑛 𝑑𝜃 = (𝑧0
𝑛 + 𝑛𝑧0

𝑛−1𝑟e𝑖𝜃 + 𝑎2𝑧0
𝑛−2𝑟2e𝑖2𝜃 + … + 𝑟𝑛e𝑖𝑛𝜃) 𝑑𝜃, 2𝜋

1 ∫ 2𝜋
1 ∫ 

0 0 

where the 𝑎𝑗 are binomial coefficients whose exact value doesn’t concern us. Since ∫0
2𝜋 e𝑖𝑚𝜃 𝑑𝜃 = 

0 for 𝑚 = 1, 2, 3, …, after integration, the only nonzero term in the integral is 

2𝜋 

𝑧0
𝑛 𝑑𝜃 = 𝑧0

𝑛. QED2𝜋
1 ∫ 

0 

Second 𝑓′(𝑧0). This is similar. We have to show that 

1 𝑧𝑛 

= 𝑛𝑧0
𝑛−1.2𝜋𝑖 ∫ (𝑧 − 𝑧0)2

𝐶 
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Using the binomial theorem we get 

1 𝑧𝑛 1 2𝜋 (𝑧0 + 𝑟e𝑖𝜃)𝑛 

𝑖𝑟e𝑖𝜃 𝑑𝜃 𝑟2e𝑖2𝜃 2𝜋𝑖 ∫ (𝑧 − 𝑧0)2 
𝑑𝑧 = 2𝜋𝑖 ∫ 

𝐶𝑟 0 

1 2𝜋 (𝑧0
𝑛 + 𝑛𝑧0

𝑛−1𝑟e𝑖𝜃 + 𝑎2𝑧0
𝑛−2𝑟2e𝑖2𝜃 + … + 𝑟𝑛e𝑖𝑛𝜃)= 𝑑𝜃, 𝑟e𝑖𝜃 2𝜋 

∫ 
0 

1 2𝜋 (𝑧0
𝑛e−𝑖𝜃 + 𝑛𝑧0

𝑛−1𝑟 + 𝑎2𝑧0
𝑛−2𝑟2e𝑖𝜃 + … + 𝑟𝑛e𝑖(𝑛−1)𝜃)= 𝑑𝜃 2𝜋 ∫ 𝑟 0 

After integration, the only nonzero term is 

2𝜋 

𝑛𝑧0
𝑛−1 𝑑𝜃 = 𝑛𝑧0

𝑛−1. QED2𝜋
1 ∫ 

0 

(b) Let 𝑃 (𝑧) = 𝑐𝑜 + 𝑐1𝑧 + 𝑐2𝑧2 + 𝑐3𝑧3. Let 𝐶 be the circle |𝑧| = 𝑎, for 𝑎 > 0. Compute the 
integral 

∫ 𝑃 (𝑧)𝑧−𝑛𝑑𝑧 for n = 0, 1, 2, … 
𝐶 

This is harder to express that to see. The key is our well known fact: 

if 𝑚 ≠ −1 ∫ 𝑧𝑚 𝑑𝑧 = {0 

𝐶 2𝜋𝑖 if 𝑚 = −1 

So 

∫ 𝑃 (𝑧)𝑧−𝑛 𝑑𝑧 = ∫ 𝑐0𝑧−𝑛 + 𝑐1𝑧1−𝑛 + 𝑐3𝑧3−𝑛 + 𝑐3𝑧3−𝑛 𝑑𝑧 
𝐶 𝐶 

Most of these terms integrate to 0. We have: 
If 𝑛 = 1 then the integral is 2𝜋𝑖𝑐0. 
If 𝑛 = 2 then the integral is 2𝜋𝑖𝑐1. 
If 𝑛 = 3 then the integral is 2𝜋𝑖𝑐2. 
If 𝑛 = 4 then the integral is 2𝜋𝑖𝑐3. 
For all other 𝑛 the integral is 0. 

Problem 3. (15: 5,5,5 points)
|𝑧|(a) Compute ∫ 

e𝑧 

𝑑𝑧 where 𝐶 is the circle |𝑧| = 2.𝑧2
𝐶 

|𝑧|e𝑧 2e𝑧 

Since |𝑧| = 2 on C, the line integral ∫ 𝑑𝑧 = ∫ 𝑧2 
𝑑𝑧. We can compute this last 

𝐶 𝑧2 
𝐶

integral using Cauchy’s integral formula for the derivative. 
𝑔(𝑧) Let 𝑔(𝑧) = 2e𝑧. Then ∫𝐶 𝑧2 𝑑𝑧 = (2𝜋𝑖)𝑔′(0) = 4𝜋𝑖 . 

∞ 1(b) Compute ∫ (𝑥2 + 1)(𝑥2 + 4) 
𝑑𝑥. 

−∞ 

Hint: integrate over the closed path shown below. Show that as 𝑅 goes to infinity the 
contribution of the integral over 𝐶𝑅 becomes 0. 
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Re(z)

Im(z)

CRCR
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There is an example like this in the topic 4 notes. The strategy is: 
𝑓(𝑧) 1. Let 𝑓(𝑧) = (𝑧2 + 1)(𝑧2 + 4) 

and use Cauchy’s formula to evaluate ∫ 𝑓(𝑧) 𝑑𝑧. 
𝐶1+𝐶𝑅 

2. Notice that lim ∫ 𝑓(𝑧) 𝑑𝑠 = the integral we want to compute. 
𝑅→∞ 𝐶1 

3. Show that lim ∫ 𝑓(𝑧) 𝑑𝑠 = 0.
𝑅→∞ 𝐶𝑅 

1Step 1. 𝑓(𝑧) = For 𝑅 large enough the singularities of 𝑓 (𝑧 + 𝑖)(𝑧 − 𝑖)(𝑧 + 2𝑖)(𝑧 − 2𝑖) . 
inside 𝐶1 + 𝐶𝑅 are 𝑧 = 𝑖 and 𝑧 = 2𝑖. As before, we break 𝐶1 + 𝐶𝑅 into two loops, each 
enclosing one of the singularities. We won’t bother drawing or naming the loops. 

1Loop around 𝑧 = 𝑖: Let 𝑔(𝑧) = (𝑧 + 𝑖)(𝑧 + 2𝑖)(𝑧 − 2𝑖) . So, by Cauchy, 

𝑔(𝑧) 𝜋 ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑧 − 𝑖 𝑑𝑧 = 2𝜋𝑖𝑔(𝑖) = 3 . 
loop loop 

1Loop around 𝑧 = 2𝑖: Let 𝑔(𝑧) = (𝑧 + 𝑖)(𝑧 − 𝑖)(𝑧 + 2𝑖) . So, by Cauchy, 

𝑔(𝑧) ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑧 − 2𝑖 𝑑𝑧 = 2𝜋𝑖𝑔(2𝑖) = −𝜋 
6 . 

loop loop 

𝜋
3 − 𝜋 𝜋 Totaling, ∫ 𝑓(𝑧) 𝑑𝑧 = = 6 

. 
𝐶1+𝐶𝑅 

6 

Step 2. This is clear: parametrize 𝐶1 as 𝛾(𝑥) = 𝑥, with −𝑅 ≤ 𝑥 ≤ 𝑅; 𝛾′(𝑥) = 1. So, 

1∫ 𝑓(𝑧) 𝑑𝑧 = ∫
𝑅 

(𝑥2 + 1)(𝑥2 + 4) 
𝑑𝑥 

𝐶1 −𝑅 

this clearly goes to the integral from −∞ to ∞ in the limit. 
Note: we should verify that the improper integral is absolutely convergent. But this is clear 
since the denominator grows like 𝑥4 and is never 0 on the real axis. 
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Step 3. Parametrize 𝐶𝑅: 𝛾(𝜃) = 𝑅e𝑖𝜃, with 0 ≤ 𝜃 ≤ 𝜋. So, 

1∣∫ 𝑓(𝑧) 𝑑𝑧∣ = ∣∫
𝜋 

(𝑅2e𝑖2𝜃 + 1)(𝑅2e𝑖2𝜃+4)𝑖𝑅e𝑖𝜃 𝑑𝜃∣
𝐶𝑅 0 

1≤ ∫
𝜋 

∣ ∣ 𝑑𝜃 (triangle inequality) (𝑅2e𝑖2𝜃 + 1)(𝑅2e𝑖2𝜃+4)𝑖𝑅e𝑖𝜃 

0 
𝜋 1= ∫ 𝑅, 𝑑𝜃 

0 |𝑅2e𝑖2𝜃 + 1| |𝑅2e𝑖2𝜃+4|
𝜋 1𝑙𝑒 ∫ |𝑅2 − 1| |𝑅2 − 4|𝑅, 𝑑𝜃 (also by triangle inequality) 

0 

𝑅𝜋 = |𝑅2 − 1| |𝑅2 − 4| 

This goes to 0 as 𝑅 goes to ∞ as required by our strategy. 
Putting the steps together: 

1 𝜋 ∫
∞ 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = lim = 
−∞ (𝑥2 + 1)(𝑥2 + 4) 

𝑑𝑥 = 
𝑅→∞ 𝐶1+𝐶𝑅 

𝑅→∞ 6 
𝜋 
6 . 

1(c) Show that ∫ 𝑧2(𝑧 − 1)3 
𝑑𝑧 = 0 in two different ways. 

|𝑧|=2 

(i) Use Cauchy’s integral formula. You’ll need to divide the contour to isolate each of the 
singularities of the integrand. 
(ii) First, show that the integral doesn’t change if you replace the contour by the curve
|𝑧| = 𝑅 for 𝑅 > 2. Next, show that this integral must go to 0 as 𝑅 goes to infinity. 
Both parts of this problem are similar to what we’ve done in earlier problems. We give brief 
answers. 
(i) Let 𝑓(𝑧) = 1/(𝑧2(𝑧 − 1)3). The countour |𝑧| = 2 contains singularities of 𝑓 at 𝑧 = 0 and
𝑧 = 1. 
Loop around 0: Let 𝑔(𝑧) = 1/(𝑧 − 1)3. 

𝑔(𝑧) ∫ 𝑓(𝑧), 𝑑𝑧 = ∫ = 2𝜋𝑖𝑔′(0) = −6𝜋𝑖. 𝑧2
|𝑧|=2 |𝑧|=2 

Loop around 1: Let 𝑔(𝑧) = 1/𝑧2. 

𝑔(𝑧) ∫ 𝑓(𝑧), 𝑑𝑧 = ∫ = 2𝜋𝑖𝑔″(1) = 6𝜋𝑖. (𝑧 − 1)3
|𝑧|=2 |𝑧|=2 

Adding these together we get 0. 
(ii) Since all the singularities of 𝑓 are inside |𝑧| = 2 the extended Cauchy theorem allow us 
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to replace the contour |𝑧| = 2 by |𝑧| = 𝑅 without changing the integral. Then, 

∣∫ 𝑓(𝑧) 𝑑𝑧∣ ≤ ∫ |𝑓(𝑧)| |𝑑𝑧|
|𝑧|=𝑅 |𝑧|=𝑅 

2𝜋 

= ∫ 𝑅2|𝑅e 
𝑅
𝑖𝜃 − 1|3 

𝑑𝜃 
0 

2𝜋 𝑅 ≤ ∫ 𝑅2(𝑅 − 1)3 
𝑑𝜃 

0 

2𝜋𝑅 = 𝑅2(𝑅 − 1)3 

This clearly goes to 0 as 𝑅 goes to infinity. 

Problem 4. (5 points) 
Suppose 𝑓 is analytic on and inside a simple closed curve 𝐶. Assume 𝑓(𝑧) = 0 for 𝑧 on 𝐶. 
Show 𝑓(𝑧) = 0 for all 𝑧 inside 𝐶. 
Take an arbitrary point 𝑧0 inside 𝐶. Cauchy’s integral formula says 

1 𝑓(𝑧) 1𝑓(𝑧0) = 𝑑𝑧 = 0 𝑑𝑧 = 0. QED2𝜋𝑖 ∫ 𝑧 − 𝑧0 2𝜋𝑖 ∫ 
𝐶 𝑐 

Problem 5. (10 points) 
Let 𝛾 be a simple closed curve that goes through the point 1 + 𝑖. Let 

1 cos(𝑤) 𝑓(𝑧) = 2𝜋𝑖 ∫ 𝑤 − 𝑧 
𝑑𝑤. 

𝛾 

Find the following limits: 
(i) lim 𝑓(𝑧), where 𝑧 goes to 1 + 𝑖 from outside 𝛾.

𝑧→1+𝑖 

(ii) lim 𝑓(𝑧), where 𝑧 goes to 1 + 𝑖 from inside 𝛾.
𝑧→1+𝑖 

(i) If 𝑧 is outside 𝛾 then 
cos(𝑤)
𝑤 − 𝑧 

is analytic on and inside 𝛾. So, Cauchy’s theorem says the 

path integral 
1 cos(𝑤) 𝑓(𝑧) = 2𝜋𝑖 ∫ 𝑤 − 𝑧 

𝑑𝑤 = 0 
𝐶 

This is constant, so the limit from the outside as 𝑧 → 1 + 𝑖 is 0. 

Re(z)

Im(z)

z (inside)

z (outside)

C
A

1 + i
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(ii) (i) If 𝑧 is inside 𝛾 then Cauchy’s integral formula says 

1 cos(𝑤) 𝑓(𝑧) = 𝑤 − 𝑧 
𝑑𝑤 = cos(1 + 𝑖) 2𝜋𝑖 ∫ 

𝐶 

This is constant, so the limit from the inside as 𝑧 → 1 + 𝑖 is cos(1 + 𝑖). 

Problem 6. (10: 5,5 points) 
(a) Suppose that 𝑓(𝑧) is analytic on a region 𝐴 that contains the disk |𝑧 − 𝑧0| ≤ 𝑟. Use 
Cauchy’s integral formula to prove the mean value property 

𝑓(𝑧0) = 
2𝜋 

𝑓(𝑧0 + 𝑟e𝑖𝜃) 𝑑𝜃. 2𝜋
1 ∫ 

0 

This is in the notes: parametrize the curve 𝐶𝑟 ∶ |𝑧 − 𝑧0| = 𝑟 by 𝛾(𝜃) = 𝑧0 + 𝑟e𝑖𝜃, with
0 ≤ 𝜃 ≤ 2𝜋. By Cauchy’s integral formula 

2𝜋 2𝜋 1 𝑓(𝑧) 1 𝑓(𝑧0 + 𝑟e𝑖𝜃) 1𝑓(𝑧0) = 𝑑𝑧 = 𝑑𝜃 = 𝑓(𝑧0 + 𝑟e𝑖𝜃) 𝑑𝜃. QED2𝜋𝑖 ∫ 𝑧 − 𝑧0 2𝜋𝑖 ∫ 𝑟e𝑖𝜃𝑖𝑟e𝑖𝜃 2𝜋 
∫ 

𝐶𝑟 0 0 

(b) Prove the more general formula 

2𝜋 

𝑓(𝑛)(𝑧0) = 
𝑛! 𝑓(𝑧0 + 𝑟e𝑖𝜃)e−𝑖𝑛𝜃 𝑑𝜃. 2𝜋𝑟𝑛 

∫ 
0 

Use the same curve as in part (a). This time use Cauchy’s formula for derivatives. 

2𝜋 2𝜋 

𝑓(𝑛)(𝑧0) = 
𝑛! 𝑓(𝑧) 𝑛! 𝑓(𝑧0 + 𝑟e𝑖𝜃) 𝑛! 𝑓(𝑧0+𝑟e𝑖𝜃)e−𝑖𝑛𝜃 𝑑𝜃. 2𝜋𝑖 ∫ (𝑧 − 𝑧0)𝑛+1 

𝑑𝑧 = 2𝜋𝑖 ∫ 𝑟𝑛+1e𝑖(𝑛+1)𝜃 
𝑖𝑟e𝑖𝜃 𝑑𝜃 = 2𝜋𝑟𝑛 

∫ 
𝐶𝑟 0 0 

This is what we needed to prove. 

Problem 7. (20: 4,4,4,4,4 points) 
Let 𝐶 be the curve |𝑧| = 2. Explain why each of the following integrals is 0. 

𝑧 (a) ∫ 𝑧2 + 35 
𝑑𝑧. 

𝐶 

Solution: The singularities of 𝑧 are at ±𝑖
√

35. These are both outside the circle𝑧2 + 35 
|𝑧| = 2. So, by Cauchy’s theorem the integral is 0. 

cos(𝑧) (b) ∫ 𝑧2 − 6𝑧 + 10 
𝑑𝑧. 

𝐶 

cos(𝑧) Solution: The singularities of 𝑧2 − 6𝑧 + 10 
are at the roots of 𝑧2 − 6𝑧 + 10. These are at 

3 ± 𝑖, which are outside the circle |𝑧| = 2. Again, by Cauchy’s theorem the integral is 0. 
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(c) ∫ e−𝑧(2𝑧 + 1) 𝑑𝑧. 
𝐶 

Solution: The integrand is entire. So by Cauchy’s theorem the integral is 0. 

(d) ∫ log(𝑧 + 3) 𝑑𝑧 (principal branch of log).
𝐶 

Solution: The principal branch of log(𝑧) has a cut on the negative real axis. So log(𝑧 + 3) 
has its branch cut on 𝑥 ≤ −3. Since this is outside the circle |𝑧| = 2, the integrand is 
analytic on and inside the curve, so by Cauchy’s theorem the integral is 0. 

Re(z)

Im(z)

Branch cut for log(z)

Re(z)

Im(z)

−3

Branch cut for log(z + 3)

(e) ∫ sec(𝑧/2) 𝑑𝑧. 
𝐶 

Solution: sec(𝑧/2) = 1/ cos(𝑧/2) has singularities at … , −3𝜋, −𝜋, 𝜋, 3𝜋, …. Since these are 
all outside the curve |𝑧| = 2, Cauchy’s theorem implies the integral is 0. 

Extra problems not to be scored. If you want someone to look at them, please turn 
them in separately to Jerry. 
Problem 8. (0 points) 

Show ∫
𝜋 

ecos 𝜃 cos(sin(𝜃)) 𝑑𝜃 = 𝜋. Hint, consider e𝑧/𝑧 over the unit circle. 
0 

Solution: (Follow the hint.) Parametrize the unit circle as 𝛾(𝜃) = e𝑖𝜃, with 0 ≤ 𝜃 ≤ 2𝜋. So, 

e𝑧 2𝜋 e𝑐𝑜𝑠𝜃+𝑖 sin 𝜃 2𝜋 

∫ 𝑧 
𝑑𝑧 = ∫ e𝑖𝜃 

𝑖e𝑖𝜃 𝑑𝜃 = 𝑖 ∫ e𝑐𝑜𝑠𝜃+𝑖 sin 𝑑𝜃 
𝛾 0 0 

2𝜋 2𝜋 

= 𝑖 ∫ ecos 𝜃(cos(sin 𝜃) + 𝑖 sin(sin 𝜃)) 𝑑𝜃 = ∫ ecos 𝜃(𝑖 cos(sin 𝜃) − sin(sin 𝜃)) 𝑑𝜃. 
0 0 

This is close to what we want. Let’s use Cauchy’s integral formula to evaluate it and then 
extract the value we need. By Cauchy the integral is 2𝜋𝑖e0 = 2𝜋𝑖. So, 

∫
2𝜋 

ecos 𝜃(𝑖 cos(sin 𝜃) − sin(sin 𝜃)) 𝑑𝜃 = 2𝜋𝑖. 
0 

Taking the imaginary part we have 

∫
2𝜋 

ecos 𝜃 cos(sin 𝜃) 𝑑𝜃 = 2𝜋. 
0 
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This integral goes to 2𝜋, while our integral goes to 𝜋. By symmetry ours is half the above. 
(It might be easier to see this if you use the limits [−𝜋, 𝜋] instead of [0, 2𝜋].) 

Answer: 𝜋 (as we were supposed to show). 

Problem 9. (0 points) 
(a) Suppose 𝑓(𝑧) is analytic on a simply connected region 𝐴 and 𝛾 is a simple closed curve 
in 𝐴. Fix 𝑧0 in 𝐴, but not on 𝛾. Use the Cauchy integral formulas to show that 

𝑓′(𝑧) 𝑓(𝑧) ∫ 𝑑𝑧 = ∫𝑧 − 𝑧0 (𝑧 − 𝑧0)2 
𝑑𝑧. 

𝛾 𝛾 

Since 𝐴 is simply connected we know 𝑓 and 𝑓′ are analytic on and inside 𝛾. There are two 
cases: (i) 𝑧0 is inside 𝛾, (ii) 𝑧0 is outside 𝛾. 
In case (i) we can use Cauchy’s formulas. 

𝑓′(𝑧) ∫ 𝑑𝑧 = 2𝜋𝑖𝑓′(𝑧0) (by Cauchy’s integral formula.) 𝑧 − 𝑧0𝛾 

𝑓(𝑧) ∫ (by Cauchy’s formula for derivatives.) (𝑧 − 𝑧0)2 
𝑑𝑧 = 2𝜋𝑖𝑓′(𝑧0)

𝛾 

These are the same. 
In case (ii) both integrands are analytic on and inside 𝛾, so both integrals are 0 by Cauchy’s 
theorem. Again, the integrals are the same. QED 

(b) Challenge: Redo part (a), but drop the assumption that 𝐴 is simply connected. 
𝑓(𝑧) 𝑓′(𝑧) 𝑓(𝑧) Let 𝑔(𝑧) = 𝑔 is analytic on a neighborhood of 𝛾. Note: 𝑔′(𝑧) = −𝑧−𝑧0 

. 𝑧 − 𝑧0 (𝑧 − 𝑧0)2 
. 

So, 
𝑓′(𝑧) 𝑓(𝑧) ∫ 𝑑𝑧 − ∫ 𝑔′(𝑧) 𝑑𝑧 = 0.𝑧 − 𝑧0 (𝑧 − 𝑧0)2 𝑑𝑧 = ∫ 

𝛾 𝛾 𝛾 

It equals 0 because the integral of a derivative around a closed curve is 0. So, the two 
integrals on the left side are equal. 

Problem 10. (0 points) 
𝑓(𝑧) Suppose 𝑓(𝑧) is entire and lim = 0. Show that 𝑓(𝑧) is constant. 

𝑧→∞ 𝑧 
You may use Morera’s theorem: if 𝑔(𝑧) is analytic on 𝐴 − {𝑧0} and continuous on 𝐴, then
𝑓 is analytic on 𝐴. 

𝑓(𝑧) − 𝑓(0) Solution: Let 𝑔(𝑧) = . Since 𝑔(𝑧) is analytic on C − {0} and continuous on C𝑧 
it is analytic on all of C, by Morera’s theorem 

We claim 𝑔(𝑧) ≡ 0. 
Suppose not, then we can pick a point 𝑧0 with 𝑔(𝑧0) ≠ 0. Since 𝑔(𝑧) goes to 0 as |𝑧| gets 
large we can pick 𝑅 large enough that |𝑔(𝑧)| < |𝑔(𝑧0)| for all |𝑧| = 𝑅. But this violates the 
maximum modulus theorem, which says that the maximum modulus of 𝑔(𝑧) on the disk 
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|𝑧| ≤ 𝑅 occurs on the circle |𝑧| = 𝑅. This disaster means our assumption that 𝑔(𝑧) ≠ 0 was 
wrong. We conclude 𝑔(𝑧) ≡ 0 as claimed. 
This means that 𝑓(𝑧) = 𝑓(0) for all 𝑧, i.e. 𝑓(𝑧) is constant. 

Problem 11. (0 points) 
cos(𝑧) (a) Compute ∫ 𝑑𝑧, where 𝐶 is the unit circle. 𝑧 𝐶 

Solution: 2𝜋𝑖 cos(0) = 2𝜋𝑖. 
sin(𝑧) (b) Compute ∫ 𝑑𝑧, where 𝐶 is the unit circle. 

𝐶 𝑧 

Solution: 2𝜋𝑖 sin(0) = 0. 
𝑧2 

(c) Compute ∫ 𝑧 − 1 
𝑑𝑧, where 𝐶 is the circle |𝑧| = 2. 

𝐶 

Solution: 2𝜋𝑖𝑧2|𝑧=1 = 2𝜋𝑖. 

(d) Compute ∫ 𝑧 
e𝑧

2 
𝑑𝑧, where 𝐶 is the circle |𝑧| = 1. 

𝐶 

Solution: 2𝜋𝑖 𝑑
𝑑𝑧
e𝑧 ∣𝑧=0 

= 2𝜋𝑖 
𝑧2 − 1 (e) Compute ∫ 𝑧2 + 1 

𝑑𝑧, where 𝐶 is the circle |𝑧| = 2. 
𝐶 

Solution: Singularities are at ±𝑖. 

Integral = 2𝜋𝑖−2 
2𝑖 + 2𝜋𝑖 −2 

−2𝑖 = 0. 

1(f) Compute ∫ 𝑧2 + 𝑧 + 1 
𝑑𝑧 where 𝐶 is the circle |𝑧| = 2. 

𝐶 

Solution: There are two roots. Splitting the contour as we’ve done several times leads to a 
total integral of 0. 
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