18.04 Problem Set 6, Spring 2018

Calendar

Mar. 19-23: Reading: Topic 7 notes (Taylor and Laurent series)
Apr. 2-6: Reading: Topic 8 (Residue theorem)

Coming next

Apr. 9-13: Applications of the residue theorem.

Problem 1. (12 points)
Say whether the following series converge or diverge.
(a) $\sum_{n=0}^{\infty}\left(\frac{1+2 i}{1-i}\right)^{n}$
(b) $\sum_{n=0}^{\infty} i^{n}$
(c) $\sum_{n=0}^{\infty}\left(\frac{1-i}{1+2 i}\right)^{n}$
(d) $\sum_{n=0}^{\infty} \frac{n!}{10^{n}}$

Problem 2. (8 points)
Find the radius of convergence.
(a) $f_{1}(z)=\sum_{n=0}^{\infty} \frac{z^{3 n}}{2^{n}}$
(b) $f_{2}(z)=1+3(z-1)+3(z-1)^{2}+(z-1)^{3}$

Problem 3. (8 points)
Suppose the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$ is R. Find the radius of convergence of each of the following.
(a) $\sum_{n=0}^{\infty} a_{n} z^{2 n}$
(b) $\sum_{n=1}^{\infty} n^{-n} a_{n} z^{n}$

Problem 4. (10 points)
(a) Give a function f that is analytic in the punctured plane $(\mathbf{C}-\{1\})$, has a simple zero at $z=0$ and an essential singularity at $z=1$.
(b) Suppose f is analytic and has a zero of order m at z_{0}. Show that $g(z)=f^{\prime}(z) / f(z)$ has a simple pole at z_{0} with $\operatorname{Res}\left(g, z_{0}\right)=m$.

Problem 5. (20 points)
(a) What is the order of the pole of $f_{1}(z)=\frac{1}{\left(2 \cos (z)-2+z^{2}\right)^{2}} \quad$ at $z=0$.

Hint: Work with $1 / f_{1}(z)$.
(b) Find the residue of $f_{2}(z)=\frac{z^{2}+1}{2 z \cos (z)}$ at $z=0$.
(c) Let $f_{3}(z)=\frac{\mathrm{e}^{z}}{z(z+1)^{3}}$. Find all the isolated singularities and compute the residue at each one.
(d) Find the residue at infinity of $f_{4}(z)=\frac{1}{1-z}$.
(e) Let $f_{5}(z)=\frac{\cos (z)}{\int_{0}^{z} f(w) d w}$, where $f(z)$ is analytic and $f(0)=1$. Find the residue at $z=0$.

Problem 6. (10 points)
Write the principal part of each function at the isolated singularity. Compute the corresponding residue.
(a) $f_{1}(z)=z^{3} \mathrm{e}^{1 / z}$
(b) $f_{2}(z)=\frac{1-\cosh (z)}{z^{3}}$

Problem 7. (8 points)
(a) Let $f(z)=(1+z)^{a}$, computed using the principal branch of log. Give the Taylor series around 0 .
(b) Does the principal branch of \sqrt{z} have a Laurent expansion in the domain $0<|z|$?

Problem 8. (15 points)
Using variations of the geometric series find the following series expansions of

$$
f(z)=\frac{1}{4-z^{2}}
$$

about $z_{0}=1$.
(a) The Taylor series. What is the radius of convergence?
(b) The Laurent series on $1<|z-1|<R_{1}$. What is R_{1} ?
(c) The Laurent series for $|z-1|>3$.

Problem 9. (15 points)
(a) Use the residue theorem to compute $\int_{|z|=3} \frac{\mathrm{e}^{i z}}{z^{2}(z-2)(z+5 i)} d z$.
(b) Evaluate $\int_{|z|=1} \mathrm{e}^{1 / z} \sin (1 / z) d z$.
(c) Explain why Cauchy's integral formula can be viewed as a special case of the residue theorem.

Problem 10. (15 points)
In this problem we will compute $\sum_{-\infty}^{\infty} \frac{1}{n^{2}}$ using the residue theorem. The techniques learned here are general. In particular, the use of $\cot (\pi z)$ is fairly common.
(a) Let $\phi(z)=\pi \cot (\pi z)=\pi \frac{\cos (\pi z)}{\sin (\pi z)}$. At all the singular points give the order of the pole and the residue.
(b) Take the contour C_{N} which is the square with vertices at $\pm(N+1 / 2) \pm i(N+1 / 2)$. Use the Cauchy residue theorem to write an expression for

$$
\int_{C_{N}} \frac{\pi \cot (\pi z)}{z^{2}} d z
$$

You'll need to do some work to compute the residue at $z=0$.
(c) We'll tell you that $|\cot (\pi z)|<2$ along the contour C_{N}. Use this to show that

$$
\lim _{N \rightarrow \infty} \int_{C_{N}} \frac{\pi \cot (\pi z)}{z^{2}} d z=0
$$

(d) Use parts (b) and (c) to compute $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Problems below here are not assigned. Do them just for fun.
Problem Fun 1. (No points)
By considering the 3 series $\quad \sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n}, \quad \sum_{n=1}^{\infty} z^{n}, \quad$ show that a power series may converge on all, some or no points on the boundary of its disk of convergence.

Problem Fun 2. (No points)
Suppose that there exists a function $f(z)$ which is analytic at $z=0$ and which satisfies the differential equation

$$
(1+z) f^{\prime}(z)=2 f(z), \text { with } f(0)=1
$$

(a) Solve this equation to get a closed-form expression for $f(z)$.
(b) Find the formula for the power series coefficients of $f(z)$ directly from the differential equation.
(c) Check your answer to part(b) against the Taylor series obtained by expanding out the closed-form expression for the solution found in part (a).

Problem Fun 3. (No points) Show that $|\cot (\pi z)|<2$ along the contour in problem 10.
Hint, show that along the vertical sides $|\cot (\pi z)|<1$, while along the horizontal sides $|\cot (\pi z)|<2$.

Problem Fun 4. (No points) Suppose the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$ is R. Show that the radius of convergence of $\sum_{n=0}^{\infty} n^{2} a_{n} z^{n}$ is also R.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

