
18.04 Problem Set 6, Spring 2018 Solutions 

Problem 1. (12 points) 
Say whether the following series converge or diverge. 

∞ 𝑛 ∞ ∞ 𝑛 ∞
(1 + 2𝑖 ( 

1 − 𝑖 𝑛!(a) ∑ (b) ∑ 𝑖𝑛 (c) ∑ (d) ∑1 − 𝑖 ) 1 + 2𝑖) 10𝑛 
𝑛=0 𝑛=0 𝑛=0 𝑛=0 

1 + 2𝑖 answers: (a) This is a geometric series with ratio 𝑟 = Since |𝑟| = 

√
√5

2 
> 1, the1 − 𝑖 . 

series diverges. 
(b) This is a geometric series with ratio 𝑟 = 𝑖. Since |𝑟| = 1, the series diverges. (We need 
the terms of the series to go to 0.) 

1 − 𝑖 (c) This is a geometric series with ratio 𝑟 = Since |𝑟| = 

√
√2

5 
< 1, the series1 + 2𝑖 . 

converges. 
(d) Using the ratio test we have 

(𝑛 + 1)!/10𝑛+1 𝑛 + 1 𝐿 = lim = lim = ∞
𝑛→∞ 𝑛!/10𝑛 𝑛→∞ 10 

Since 𝐿 > 1 the series diverges. 

Problem 2. (8 points) 
Find the radius of convergence. 

∞ 𝑧3𝑛 

(a) 𝑓1(𝑧) = ∑ 2𝑛 
(b) 𝑓2(𝑧) = 1 + 3(𝑧 − 1) + 3(𝑧 − 1)2 + (𝑧 − 1)3 

𝑛=0 

𝑧3 

answers: (a) The series is a geometric series with ratio The series converges if2 
. 

|𝑧3|/2 < 1, i.e. for |𝑧| < 21/3. 
(b) This is a finite series. The radius of convergence is ∞. 

Problem 3. (8 points) 

Suppose the radius of convergence of 
∞

∑ 𝑎𝑛𝑧𝑛 is 𝑅. Find the radius of convergence of 
𝑛=0 

each of the following. 

(a) 
∞

𝑎𝑛𝑧2𝑛 ∑ (b) 
∞

𝑛−𝑛𝑎𝑛𝑧𝑛 ∑ 
𝑛=0 𝑛=1 

answers: (a) Let 𝑤 = 𝑧2. We know ∑ 𝑎𝑛𝑤𝑛 converges for |𝑤| < 𝑅. That is, the series 

converges for |𝑧2| < 𝑅, equivalently for |𝑧| < 𝑅1/2. The radius of convergence is 𝑅1/2. 
(b) We’ll see that the series converges for all 𝑧, i.e. the radius of convergence is infinite. 
The proof is by asymptotic comparison. Pick any 𝑧. For large enough 𝑛, know |𝑧|/𝑛 < 𝑅/2. 
Thus, by asymptotic comparison to the convergent series ∑ |𝑎𝑛|(𝑅/2)𝑛 the series converges 
for all 𝑧. 

1 
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Problem 4. (10 points) 
(a) Give a function 𝑓 that is analytic in the punctured plane (C − {1}), has a simple zero 
at 𝑧 = 0 and an essential singularity at 𝑧 = 1. 
(b) Suppose 𝑓 is analytic and has a zero of order 𝑚 at 𝑧0. Show that 𝑔(𝑧) = 𝑓′(𝑧)/𝑓(𝑧) 
has a simple pole at 𝑧0 with Res(𝑔, 𝑧0) = 𝑚. 
answers: (a) 𝑓(𝑧) = 𝑧e1/(𝑧−1) will do. 
(b) This is a matter of writing out the Taylor series 

𝑓(𝑧) = 𝑎𝑚(𝑧 − 𝑧0)𝑚 + 𝑎𝑚+1(𝑧 − 𝑧0)𝑚+1 + … 

= 𝑎𝑚(𝑧 − 𝑧0)𝑚 ⋅ 𝑔(𝑧), where 𝑔(𝑧0) = 1 

𝑓′(𝑧) = 𝑚𝑎𝑚(𝑧 − 𝑧0)𝑚−1 + (𝑚 + 1)𝑎𝑚+1(𝑧 − 𝑧0)𝑚 + … 

= 𝑚𝑎𝑚(𝑧 − 𝑧0)𝑚−1 ⋅ ℎ(𝑧), where ℎ(𝑧0) = 1 

So, 
𝑓′(𝑧) 𝑚𝑎𝑚(𝑧 − 𝑧0)𝑚−1ℎ(𝑧) 𝑚 ℎ(𝑧) = = ⋅𝑓(𝑧) 𝑎𝑚(𝑧 − 𝑧0)𝑚𝑔(𝑧) 𝑧 − 𝑧0 𝑔(𝑧) 

Since ℎ(𝑧)/𝑔(𝑧) is analytic and ℎ(𝑧0)/𝑔(𝑧0) = 1, the desired result Res(𝑔, 𝑧0) = 𝑚 follows. 

Problem 5. (20 points) 
1(a) What is the order of the pole of 𝑓1(𝑧) = at 𝑧 = 0.(2 cos(𝑧) − 2 + 𝑧2)2 

Hint: Work with 1/𝑓1(𝑧). 
Solution: Let 𝑔 = 1/𝑓1 = (2 cos(𝑧) − 2 + 𝑧2)2. We write out the Taylor series for this 

2 

𝑔(𝑧) = (2 (1 − 
𝑧
2!

2
+ 𝑧

4!
4

− …) − 2 + 𝑧2) = 𝑧8 (4!
2 + 𝑎9𝑧 + + …) 

Since 𝑔 has a zero of order 8, 𝑓1 = 1/𝑔 has a pole of order 8 at 𝑧 = 0. 
𝑧2 + 1 (b) Find the residue of 𝑓2(𝑧) = at 𝑧 = 0.2𝑧 cos(𝑧) 

Solution: Since cos(0) = 1, 𝑔(𝑧) = 𝑧𝑓2(𝑧) is analytic at 𝑧 = 0. This tells us the pole is 
simple and Res(𝑓2, 0) = 𝑔(0) = 1/2. 

e𝑧 

(c) Let 𝑓3(𝑧) = Find all the isolated singularities and compute the residue at𝑧(𝑧 + 1)3 
. 

each one. 
Solution: There are poles at 𝑧 = 0 and 𝑧 = −1. 
At 𝑧 = 0: the pole is simple, 

Res(𝑓3, 0) = lim 𝑧𝑓3(𝑧) = 1 (by inspection). 
𝑧→0 
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At 𝑧 = −1: 𝑔(𝑧) = (𝑧 + 1)3𝑓3(𝑧) = 
e 
𝑧
𝑧 

is analytic at 𝑧 = −1. If 𝑔(𝑧) = 𝑎0 + 𝑎1(𝑧 + 1) + …, 
then Res(𝑓, −1) = 𝑎2 = 𝑔″(−1)/2!. Now it’s easy to compute that Res(𝑓3, −1) = −5e−1/2. 

1(d) Find the residue at infinity of 𝑓4(𝑧) = 1 − 𝑧 
. 

Solution: First we find 

1 1 1 1𝑔(𝑧) = 𝑤2 
𝑓4(1/𝑤) = ⋅𝑤2 1 − 1/𝑤 

= 𝑤(𝑤 − 1) 

So 
Res(𝑓4, ∞) = − Res(𝑔, 0) = 1. 

cos(𝑧) (e) Let 𝑓5(𝑧) = 
0 

𝑓(𝑤) 𝑑𝑤
, where 𝑓(𝑧) is analytic and 𝑓(0) = 1. Find the residue at 𝑧 = 0.

∫𝑧 

Let 𝑔(𝑧) = ∫
𝑧

𝑓(𝑤) 𝑑𝑤. So 𝑔 is analytic and 𝑔(0) = 0 and 𝑔′(0) = 𝑓(0) = 1. That is 𝑔 has 
0 

a simple zero at 𝑧 = 0. Thus, 𝑓5(𝑧) = cos(𝑧)/𝑔(𝑧) has a simple pole at 𝑧 = 0 and we have, 

Res(𝑓5, 0) = 
cos(0) = 1𝑔′(0) 

Problem 6. (10 points) 
Write the principal part of each function at the isolated singularity. Compute the corre-
sponding residue. 
(a) 𝑓1(𝑧) = 𝑧3e1/𝑧 

Solution: The only singularity is at 𝑧 = 0. We know 

1 1 1 e1/𝑧 = 1 + 
1 
𝑧 

+ 2𝑧2 
+ 3!𝑧3 

+ 4!𝑧4 
+ … 

So, 
𝑓1(𝑧) = 𝑧3 + 𝑧2 + 𝑧

2 + 
1 
3! + 4!𝑧

1 + … 

1Thus, we have Res(𝑓1, 0) = 24. 

1 − cosh(𝑧) (b) 𝑓2(𝑧) = 𝑧3 

Solution: The only singularity is at 𝑧 = 0. We know 

2 
+ 

𝑧4 

cosh(𝑧) = 1 + 
𝑧2 

4! + … 

So, 
−𝑧2/2 − 𝑧4/4! − … 𝑓2(𝑧) = = − 1 

4! − … 𝑧3 2𝑧 − 
𝑧 

Thus, we have Res(𝑓2, 0) = −1 
2. 
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Problem 7. (8 points) 
(a) Let 𝑓(𝑧) = (1 + 𝑧)𝑎, computed using the principal branch of log. Give the Taylor series 
around 0. 
Solution: We’ll do this using derivatives. Keeping the branch in mind 𝑓(𝑧) = e𝑎 log(1+𝑧). On 
the principle branch, 𝑓(0) = 1. Taking derivatives we have 

𝑓(𝑛)(𝑧) = 𝑎(𝑎 − 1) ⋯ (𝑎 − 𝑛 + 1)(1 + 𝑧)𝑎−𝑛, 𝑓(𝑛)(0) = 𝑎(𝑎 − 1) ⋯ (𝑎 − 𝑛 + 1). 

So 

∞
𝑧2 + … + 

𝑎(𝑎 − 1) ⋯ (𝑎 − 𝑛 + 1) (𝑎 𝑓(𝑧) = 1 + 𝑎𝑧 + 
𝑎(𝑎 − 1) 𝑧𝑛 + … = ∑ 𝑛)𝑧𝑛 

2 𝑛! 𝑛=0 

𝑎(𝑎 − 1) ⋯ (𝑎 − 𝑛 + 1) where (𝑛
𝑎) is defined as .𝑛! 

The question didn’t ask for the following, but they are worth noting. 
1. If 𝑎 = 𝑛 is a nonnegative integer then the Taylor coefficients are 0 for powers bigger than 
𝑛. For such 𝑎, 𝑓 is entire and the radius of convergence is ∞. 
2. For all other 𝑎 the disk of convergence centered at 0, goes as far as the first singularity, 
which is at 𝑧 = 1. That is, the radius of convergence is 1. 
(b) Does the principal branch of 

√𝑧 have a Laurent expansion in the domain 0 < |𝑧|? 

Solution: No, 
√𝑧 is not analytic on the region 0 < |𝑧|. In fact, it is not analytic on any 

annulus centered at 0. 

Problem 8. (15 points) 
Using variations of the geometric series find the following series expansions of 

1𝑓(𝑧) = 4 − 𝑧2 

about 𝑧0 = 1. 
(a) The Taylor series. What is the radius of convergence? 

(b) The Laurent series on 1 < |𝑧 − 1| < 𝑅1. What is 𝑅1? 

(c) The Laurent series for |𝑧 − 1| > 3. 
answers: Here is a picture showing the singularities of 𝑓 and the various regions. The 
labels are: 

𝐴1 ∶ |𝑧 − 1| < 1, 𝐴2 ∶ 1 < |𝑧 − 1| < 3, 𝐴3 ∶ 3 < |𝑧 − 1|. 
We’ll get a different Laurent series in each region. 
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Re(z)

Im(z)

1
XX
2-2

A1

A2

A3

The calculations will be easier if we express 𝑓 using partial fractions 

1 1 1𝑓(𝑧) = (2 − 𝑧)(2 + 𝑧) 
= 4(2 − 𝑧) 

+ 4(2 + 𝑧). 

We write the Laurent series for each piece in each region. 
1 1=2 − 𝑧 1 − (𝑧 − 1) . 

In 𝐴1 we have |𝑧 − 1| < 1, so the geometric series 

∞1 1= 1 − (𝑧 − 1) 
= 1 + (𝑧 − 1) + (𝑧 − 1)2 + … = ∑(𝑧 − 1)𝑛 (1)2 − 𝑧 𝑛=0 

converges. 
In 𝐴2 and 𝐴3 we have |𝑧 − 1| > 1, so the geometric series 

∞ 𝑛 1 1 1 1= − ⋅ ∑ ( (2)2 − 𝑧 𝑧 − 1 1 − 1/(𝑧 − 1) 
= − 𝑧 − 1)

𝑛=1 

converges. 
1 1 1 1Likewise = ⋅2 + 𝑧 3 + (𝑧 − 1) 

= 3 1 + (𝑧 − 1)/3 . 

In 𝐴1 and 𝐴2 we have |𝑧 − 1|/3 < 1, so the geometric series 

∞ 𝑛 1 1 1 1 (−1)𝑛 (𝑧 − 1 = ⋅ ∑ ) (3)2 + 𝑧 3 1 + (𝑧 − 1)/3 
= 3 3𝑛=0 

converges. 
In 𝐴3 we have |𝑧 − 1|/3 > 1, so 3/|𝑧 − 1| < 1 and the geometric series 

∞ 𝑛 ∞1 1 1 1 ( 
−3 (−3)𝑛−1 

= ( ⋅ ( ∑ = ∑ (4)2 + 𝑧 𝑧 − 1) 1 + 3/(𝑧 − 1)) = 𝑧 − 1 𝑧 − 1) (𝑧 − 1)𝑛 
𝑛=0 𝑛=1 

converges. 
1 1 1We can now answer each part using 𝑓(𝑧) = 4 (2 − 𝑧 

+ 2 + 𝑧 
) 
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(a) On 𝐴1: 𝑓(𝑧) is analytic on 𝐴1 and the Taylor series is 

∞ ∞ ∞1 (−1)𝑛 (𝑧 − 1)𝑛 

4 
+ 

(−1)𝑛 

𝑓(𝑧) = ∑(𝑧 − 1)𝑛 + 1 ∑ ) = ∑ (1 
3𝑛 ) (𝑧 − 1)𝑛 

4 ( 3 3𝑛 12 ⋅𝑛=0 𝑛=0 𝑛=0 

(b) On 𝐴2: The Laurent series is 

∞ ∞1 (−1)𝑛 (𝑧 − 1)𝑛 

𝑓(𝑧) = −1
4 ∑ (𝑧 − 1)𝑛 + 12

1 ∑ 3𝑛 
𝑛=1 𝑛=0 

(c) On 𝐴3: The Laurent series is 

∞ 1 ∞ (−3)𝑛−1 1 ∞ 1𝑓(𝑧) = −1
4 ∑ (𝑧 − 1)𝑛 + 1

4 ∑ (𝑧 − 1)𝑛 
= 4 ∑ (−1 + (−3)𝑛−1) (𝑧 − 1)𝑛 . 

𝑛=1 𝑛=1 𝑛=1 

Problem 9. (15 points) 
e𝑖𝑧 

(a) Use the residue theorem to compute ∫ 𝑧2(𝑧 − 2)(𝑧 + 5𝑖) 
𝑑𝑧. 

|𝑧|=3 

e𝑖𝑧 

Solution: The function 𝑓(𝑧) = 𝑧2(𝑧 − 2)(𝑧 + 5𝑖) 
is meromorphic with poles at 0, 2, −5𝑖. Of 

these, only 0 and 2 are inside the countour of integration 𝐶: |𝑧| = 3. 

Re(z)

Im(z)

0 2

−5i

C

So, ∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖(Res(𝑓, 0) + Res(𝑓, 2)). To finish the problem we must compute the 
𝐶

residues. 
e𝑖𝑧 −12 + 5𝑖 At 𝑧 = 0: 𝑔(𝑧) = 𝑧2𝑓(𝑧) = .(𝑧 − 2)(𝑧 + 5𝑖) 

is analytic. Thus, Res(𝑓, 0) = 𝑔′(0) = 100 
(We’ll leave it to you to provide the details for finding 𝑔′(0).) 

e𝑖𝑧 e2𝑖 

At 𝑧 = 2: 𝑔(𝑧) = (𝑧 − 2)𝑓(𝑧) = 𝑧2(𝑧 + 5𝑖) 
is analytic. Thus, Res(𝑓, 2) = 𝑔(2) = 4(2 + 5𝑖) . 

We conclude that 
e𝑖𝑧 e2𝑖 

∫ +𝑧2(𝑧 − 2)(𝑧 + 5𝑖) 
𝑑𝑧 = 2𝜋𝑖 (−12 + 5𝑖 

4(2 + 5𝑖)) .100|𝑧|=3 
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(b) Evaluate ∫ e1/𝑧 sin(1/𝑧) 𝑑𝑧. 
|𝑧|=1 

Solution: The integrand 𝑓(𝑧) = e1/𝑧 sin(1/𝑧) has a pole at 𝑧 = 0 and no other singularities. 
To compute the residue we multiply series 

1 1 1𝑓(𝑧) = (1 + 
1 

2!𝑧2 + …) (1 
𝑧2 + … 𝑧 + 𝑧 − 3!𝑧3 + …) = 𝑧 + 
1 

Thus, Res(𝑓, 0) = 1 and ∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖. 
|𝑧|=1 

(c) Explain why Cauchy’s integral formula can be viewed as a special case of the residue 
theorem. 
Solution: Cauchy’s integral formula says: if 𝐶 is a simple closed curve and 𝑓 is analytic on

𝑓(𝑧) and inside 𝐶 and ∫ 𝑓(𝑧0) = 2𝜋𝑖𝑓(𝑧0). 
𝐶 𝑧 − 𝑧0 

On the other hand, since 𝑓 is analytic the only singularity of 𝑓(𝑧)/(𝑧 − 𝑧0) is at 𝑧 = 𝑧0. So,
𝑓(𝑧) the residue theorem says ∫ 𝑓(𝑧0) = 2𝜋𝑖 Res(𝑓(𝑧)/(𝑧 − 𝑧0), 𝑧0).𝑧 − 𝑧0𝐶 

To see both theorems give the same result we note that 𝑧0 is a simple pole and Res(𝑓(𝑧)/(𝑧− 
𝑧0), 𝑧0) = 𝑓(𝑧0). 
Note: the condition 𝑓 is analytic on 𝐶 can be relaxed. It is enough the 𝑓 be analytic inside 
𝐶 and continuous on and inside 𝐶. Even this can be further relaxed. 

Problem 10. (15 points) 
∞ 

In this problem we will compute ∑ 𝑛
1
2 

using the residue theorem. The techniques learned 
−∞ 

here are general. In particular, the use of cot(𝜋𝑧) is fairly common. 

(a) Let 𝜙(𝑧) = 𝜋 cot(𝜋𝑧) = 𝜋 
cos(𝜋𝑧) At all the singular points give the order of the pole sin(𝜋𝑧) 

. 
and the residue. 
Solution: We know that 𝑔(𝑧) = sin(𝜋𝑧) has zeros at all integers 𝑛. Also, 𝑔′(𝑛) = 𝜋 cos(𝑛𝜋) 
Since this is not zero, the zeros are simple. Therefore the poles of 𝜙 are simple and 

𝜋 cos(𝑛𝜋) Res(𝜙, 𝑛) = 𝜋 cos(𝑛𝜋) 
= 1. 

(b) Take the contour 𝐶𝑁 which is the square with vertices at ±(𝑁 + 1/2) ± 𝑖(𝑁 + 1/2). Use 
the Cauchy residue theorem to write an expression for 

𝜋 cot(𝜋𝑧) ∫ 𝑑𝑧. 𝑧2
𝐶𝑁 

You’ll need to do some work to compute the residue at 𝑧 = 0. 
Solution: 
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Re(z)

Im(z)

N−N

Ni

−Ni

CN

𝐶𝑁 , with poles inside at the integers 

First we compute the residues of 𝑓 : 
At 𝑧 = 𝑛 ≠ 0: Since 1/𝑛2 ≠ 0, Res(𝑓, 𝑛) = Res(𝜙, 𝑛)/𝑛2 = 1/𝑛2. 
At 𝑧 = 0: Below we’ll show that Res(𝑓, 0) = −𝜋2/3. 
The poles inside 𝐶𝑁 are at −𝑁, −𝑁 + 1, … , 0, 1, 2, … , 𝑁 . So, taking into account that the 
residue at 𝑧 = 0 is special, we get 

𝑁 𝑁 𝑁 1 1∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 ∑ Res(𝑓, 𝑛) = 2𝜋𝑖 ∑ 𝑛2 
− 

𝜋2 

= 2 ∑ 𝑛2 
− 

𝜋2 

3 .3𝐶𝑁 𝑛=−𝑁 𝑛=−𝑁, 𝑛≠0 𝑛=1 

The last equality uses the fact 1/𝑛2 = 1/(−𝑛)2. 
The last thing we need to do is show how to compute the residue at 𝑧 = 0. For the grunge 
work we’ll work with cot(𝑧). We can bring back the factors of 𝜋 at the end. We know cot(𝑧) 
has a simple pole at 𝑧 = 0, so 

𝑏1cot(𝑧) = 𝑧 
+ 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 

Because we’ll be dividing by 𝑧2 the residue will come from 𝑎1. We compute this as follows: 

𝑏1cot(𝑧) = 𝑧 
+ 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 

= 
cos(𝑧) 1 − 𝑧2/2 + … = sin(𝑧) 𝑧 − 𝑧3/3! + … 

Cross-multiplying we get 

1 − 
𝑧
2
2

+ … = (𝑏
𝑧
1 + 𝑎0 + 𝑎1𝑧 + …) (𝑧 − 

𝑧
3!

3 

+ …) 

= 𝑏1 + 𝑎0𝑧 + (𝑎1 − 
𝑏
3
1 ) 𝑧2 + … 

Equating coefficients of 𝑧𝑛 we get:
1 = 𝑏1
0 = 𝑎0
−1/2 = 𝑎1 − 𝑏1/3!, which implies 𝑎1 = −1/3. 
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1Thus cot(𝑧) = 𝑧 − 𝑧
3 + …. This gives us 

𝜋 cot(𝜋𝑧) 𝜋 1𝑓(𝑧) = = 𝜋𝑧 
− 𝜋𝑧 

3 
+ …) = 𝑧3 − 𝜋

3𝑧
2

+ … 𝑧2 𝑧2 ( 1 

This shows Res(𝑓, 0) = −𝜋2/3 as claimed above. 
(c) We’ll tell you that | cot(𝜋𝑧)| < 2 along the contour 𝐶𝑁 . Use this to show that 

𝜋 cot(𝜋𝑧) lim ∫ 𝑑𝑧 = 0.
𝑁→∞ 𝑧2

𝐶𝑁 

Solution: The length of 𝐶𝑁 is 2(2𝑁 + 1). Since | cot(𝜋𝑧)| < 2, along 𝐶𝑁 we have 

𝜋 cot(𝜋𝑧) 2𝜋 ∣ ∣ ≤𝑧2 (𝑁 + 1/2)2 

So 
𝜋 cot(𝜋𝑧) 2𝜋 2𝜋 ∣∫ 𝑑𝑧∣ ≤ ∫ | = ⋅ 4(2𝑁 + 1). 𝑧2 (𝑁 + 1/2)2 

𝑑|𝑧 (𝑁 + 1/2)2
𝐶𝑁 𝐶𝑁 

This last expression clearly goes to 0 as 𝑁 goes to infinity, so we have shown what we need 
to. 

∞ 1(d) Use parts (b) and (c) to compute ∑ 𝑛2 
. 

𝑛=1 

Solution: By parts (b) and (c), letting 𝑁 → ∞, we have 

∞ 1lim ∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 [2 ∑ 𝑛2 
− 

𝜋
3
2
] = 0.

𝑁→∞ 𝐶𝑛 𝑛=1 

∞ 1 𝜋2 

This implies ∑ = 6 . .𝑛2
𝑛=1 

Problems below here are not assigned. Do them just for fun. 
Problem Fun 1. (No points) 

∞ 𝑧𝑛 ∞ 𝑧𝑛 ∞ 

By considering the 3 series ∑ ∑ ∑ 𝑧𝑛, show that a power series may 𝑛2 , 𝑛 
,

𝑛=1 𝑛=1 𝑛=1 
converge on all, some or no points on the boundary of its disk of convergence. 
Solution: For all three series the radius of convergence is 𝑅 = 1. So the boundary of the 
disk of convergence is the circle |𝑧| = 1. (Often this is called the circle of convergence, which 
is a slightly confusing name as this problem shows.) 

Since ∑ 𝑛
1
2 

is convergent, the series ∑ 
𝑧
𝑛

𝑛

2 
converges absolutely everywhere on the circle 

|𝑧| = 1. 

Since ∑ 
(−1)𝑛 

converges (conditionally not absolutely) and ∑ 𝑛
1 diverges. We see that𝑛 

the series ∑ 
𝑧
𝑛
𝑛 

converges at some points on |𝑧| = 1. (In fact, it turns out this series 

converges at every point on the circle except at |𝑧| = 1.) 
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When |𝑧| = 1 the terms in ∑ 𝑧𝑛 do not decay to 0. Therefore the series is not convergent 
for any 𝑧 on the unit circle. 

Problem Fun 2. (No points) 
Suppose that there exists a function 𝑓(𝑧) which is analytic at 𝑧 = 0 and which satisfies the 
differential equation 

(1 + 𝑧)𝑓′(𝑧) = 2𝑓(𝑧), with 𝑓(0) = 1. 

(a) Solve this equation to get a closed-form expression for 𝑓(𝑧). 
Solution: The differential equation is separable: 𝑓′/𝑓 = 2/(1 + 𝑧). Solving we get 𝑓(𝑧) = 

𝐶(𝑧 + 1)2. The inital condition 𝑓(0) = 1 determines 𝐶 = 1. So, 𝑓(𝑧) = (𝑧 + 1)2. 
(b) Find the formula for the power series coefficients of 𝑓(𝑧) directly from the differential 
equation. 
Solution: We express 𝑓(𝑧) and 𝑓′(𝑧) as Taylor series 

∞
𝑓(𝑧) = 𝑎0 + 𝑎1𝑧 + … = ∑ 𝑎𝑛𝑧𝑛 

𝑛=0 
∞

𝑓′(𝑧) = 𝑎1 + … = ∑ 𝑛𝑎𝑛𝑧𝑛−1 

𝑛=0 

Multiplying we get and substituting into the DE we get 

∞
(1 + 𝑧)𝑓′(𝑧) = ∑(𝑛𝑎𝑛 + (𝑛 + 1)𝑎𝑛+1)𝑧𝑛 = ∑ 2𝑎𝑛𝑧𝑛. 

𝑛=0 

Equation coefficients gives the relation: 2𝑎𝑛 = 𝑛𝑎𝑛 + (𝑛 + 1)𝑎𝑛+1. A little algebra converts 
this to the recursive formula 

(2 − 𝑛)𝑎𝑛 .𝑎𝑛+1 = 1 + 𝑛 

The initial condition gives 𝑓(0) = 𝑎0 = 1. Using the recursion relation we find 𝑎1 = 2,
𝑎2 = 1, 𝑎𝑚 = 0 for 𝑚 ≥ 3. Thus, 𝑓(𝑧) = 1 + 2𝑧 + 𝑧2. 
(c) Check your answer to part(b) against the Taylor series obtained by expanding out the 
closed-form expression for the solution found in part (a). 
Solution: The answers to parts (a) and (b) are clearly the same. 

Problem Fun 3. (No points) Show that | cot(𝜋𝑧)| < 2 along the contour in problem 10. 
Hint, show that along the vertical sides | cot(𝜋𝑧)| < 1, while along the horizontal sides
| cot(𝜋𝑧)| < 2. 
Solution: We know 

= 𝑖 e
𝑖𝜋𝑧 + e−𝑖𝜋𝑧 𝑖(e2𝜋𝑖𝑧 + 1) cot(𝜋𝑧) = 

cos(𝜋𝑧) = .sin(𝜋𝑧) e𝑖𝜋𝑧 − e−𝑖𝜋𝑧 e2𝑖𝜋𝑖𝑧 − 1 
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The right side of 𝐶𝑁 is along the line (𝑁 + 1/2) + 𝑖𝑦. On this line 

e𝑖(2𝑁+1)𝜋e−2𝜋𝑦 + 1 −e−2𝜋𝑦 + 1 | cot(𝜋𝑧)| = ∣ ∣ = ∣ ∣ . e𝑖(2𝑁+1)𝜋e−2𝜋𝑦 − 1 −e−2𝜋𝑦 − 1 

Since e−2𝜋𝑦 > 0, the denominator is clearly larger in magnitude than the numerator. So
|𝑐𝑜𝑡(𝜋𝑧)| < 1 along the right side of 𝐶𝑁 . 
Since the left side of 𝐶𝑁 is minus the right side and cot is an odd function, the result holds 
along the left side as well. 
The top side of 𝐶𝑁 is along the line 𝑥 + 𝑖(𝑁 + 1/2). So along this line 

e2𝜋𝑖𝑥e−(2𝑁+1)𝜋 + 1 ≤ 
1 + e−(2𝑁+1)𝜋 

| cot(𝜋𝑧)| = ∣ ∣e2𝜋𝑖𝑥e−(2𝑁+1)𝜋 − 1 1 − e−(2𝑁+1)𝜋 

1 + 𝑎 This is of the form 1 − 𝑎 , with 0 < 𝑎 ≤ e−𝜋. Since (1 + 𝑎)/(1 − 𝑎) is an increasing function, 
the maximum is at 𝑎 = e−𝜋 and this is clearly less than 2 (in fact, less than 1.1). 
Again, by symmetry the result holds on the bottom also. 
We have shown that, along 𝐶𝑁 , | cot(𝜋𝑧)| < 2. 

∞ 

Problem Fun 4. (No points) Suppose the radius of convergence of ∑ 𝑎𝑛𝑧𝑛 is 𝑅. Show 
𝑛=0

∞ 

that the radius of convergence of ∑ 𝑛2𝑎𝑛𝑧𝑛 is also 𝑅. 
𝑛=0 

Solution: Idea: if the we can use ratio test then the factor of 𝑛2 does not change the limit 
of the ratio test. That is, 

(𝑛 + 1)2|𝑎𝑛+1𝑧𝑛+1| (𝑛 + 1)2 |𝑎𝑛+1𝑧| |𝑎𝑛+1𝑧|𝐿 = lim = lim lim = lim .
𝑚→∞ 𝑛2|𝑎𝑛𝑧𝑛| 𝑛2 |𝑎𝑛| |𝑎𝑛| 

Since we get the same limit with or without the factor of 𝑛2, the radius of convergence is 
the same in both cases. 
The problem is that the limit might not exist. We offer two more technical proofs. 
Proof 1. Let 𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛. We know that 𝑓(𝑧) is anlaytic inside the radius of conver-

𝑛=0 
gence 𝑅. By Taylor’s theorem we also know that 

∞ 

𝑛𝑎𝑛𝑧𝑛−1𝑓′(𝑧) = ∑ 
𝑛=0 

∞ 

has the same radius of convergence. Thus 𝑔(𝑧) = 𝑧𝑓′(𝑧) = ∑ 𝑛𝑎𝑛𝑧𝑛 also has radius of 
𝑛=0

∞ 

convergence 𝑅. Continuing in the same way, 𝑧𝑔′(𝑧) = ∑ 𝑛2𝑎𝑛𝑧𝑛 has radius of convergence 
𝑛=0

𝑅. 
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Proof 2. Pick 𝑧 with |𝑧| = 𝑟 < 𝑅. Then pick 𝑟1 with 𝑟 < 𝑟1 < 𝑅. Since the original series 
has radius of convergence 𝑅, ∑ |𝑎𝑛|𝑟1

𝑛 converges. Now, since 𝑟1/𝑟 > 1, we know 

𝑛2𝑟𝑛 𝑛2 

lim = lim = 0.
𝑛→∞ 𝑟1

𝑛 (𝑟1/𝑟)𝑛 

Thus ∑ |𝑛2𝑎𝑛𝑧𝑛| = ∑ 𝑛2|𝑎𝑛|𝑟𝑛 converges by asymptotic comparison with ∑ |𝑎𝑛|𝑟1
𝑛. 

QED 
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