18.04 Problem Set 6, Spring 2018 Solutions

Problem 1. (12 points)
Say whether the following series converge or diverge.
(a) $\sum_{n=0}^{\infty}\left(\frac{1+2 i}{1-i}\right)^{n}$
(b) $\sum_{n=0}^{\infty} i^{n}$
(c) $\sum_{n=0}^{\infty}\left(\frac{1-i}{1+2 i}\right)^{n}$
(d) $\sum_{n=0}^{\infty} \frac{n!}{10^{n}}$
answers: (a) This is a geometric series with ratio $r=\frac{1+2 i}{1-i}$. Since $|r|=\frac{\sqrt{5}}{\sqrt{2}}>1$, the series diverges.
(b) This is a geometric series with ratio $r=i$. Since $|r|=1$, the series diverges. (We need the terms of the series to go to 0 .)
(c) This is a geometric series with ratio $r=\frac{1-i}{1+2 i}$. Since $|r|=\frac{\sqrt{2}}{\sqrt{5}}<1$, the series converges.
(d) Using the ratio test we have

$$
L=\lim _{n \rightarrow \infty} \frac{(n+1)!/ 10^{n+1}}{n!/ 10^{n}}=\lim _{n \rightarrow \infty} \frac{n+1}{10}=\infty
$$

Since $L>1$ the series diverges.

Problem 2. (8 points)
Find the radius of convergence.
(a) $f_{1}(z)=\sum_{n=0}^{\infty} \frac{z^{3 n}}{2^{n}}$
(b) $f_{2}(z)=1+3(z-1)+3(z-1)^{2}+(z-1)^{3}$
answers: (a) The series is a geometric series with ratio $\frac{z^{3}}{2}$. The series converges if $\left|z^{3}\right| / 2<1$, i.e. for $|z|<2^{1 / 3}$.
(b) This is a finite series. The radius of convergence is ∞.

Problem 3. (8 points)
Suppose the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$ is R. Find the radius of convergence of each of the following.
(a) $\sum_{n=0}^{\infty} a_{n} z^{2 n}$
(b) $\sum_{n=1}^{\infty} n^{-n} a_{n} z^{n}$
answers: (a) Let $w=z^{2}$. We know $\sum a_{n} w^{n}$ converges for $|w|<R$. That is, the series converges for $\left|z^{2}\right|<R$, equivalently for $|z|<R^{1 / 2}$. The radius of convergence is $R^{1 / 2}$.
(b) We'll see that the series converges for all z, i.e. the radius of convergence is infinite. The proof is by asymptotic comparison. Pick any z. For large enough n, know $|z| / n<R / 2$. Thus, by asymptotic comparison to the convergent series $\sum\left|a_{n}\right|(R / 2)^{n}$ the series converges for all z.

Problem 4. (10 points)
(a) Give a function f that is analytic in the punctured plane $(\mathbf{C}-\{1\})$, has a simple zero at $z=0$ and an essential singularity at $z=1$.
(b) Suppose f is analytic and has a zero of order m at z_{0}. Show that $g(z)=f^{\prime}(z) / f(z)$ has a simple pole at z_{0} with $\operatorname{Res}\left(g, z_{0}\right)=m$.
answers: (a) $f(z)=z \mathrm{e}^{1 /(z-1)}$ will do.
(b) This is a matter of writing out the Taylor series

$$
\begin{aligned}
f(z) & =a_{m}\left(z-z_{0}\right)^{m}+a_{m+1}\left(z-z_{0}\right)^{m+1}+\ldots \\
& =a_{m}\left(z-z_{0}\right)^{m} \cdot g(z), \text { where } g\left(z_{0}\right)=1 \\
f^{\prime}(z) & =m a_{m}\left(z-z_{0}\right)^{m-1}+(m+1) a_{m+1}\left(z-z_{0}\right)^{m}+\ldots \\
& =m a_{m}\left(z-z_{0}\right)^{m-1} \cdot h(z), \text { where } h\left(z_{0}\right)=1
\end{aligned}
$$

So,

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{m a_{m}\left(z-z_{0}\right)^{m-1} h(z)}{a_{m}\left(z-z_{0}\right)^{m} g(z)}=\frac{m}{z-z_{0}} \cdot \frac{h(z)}{g(z)}
$$

Since $h(z) / g(z)$ is analytic and $h\left(z_{0}\right) / g\left(z_{0}\right)=1$, the desired result $\operatorname{Res}\left(g, z_{0}\right)=m$ follows.

Problem 5. (20 points)
(a) What is the order of the pole of $f_{1}(z)=\frac{1}{\left(2 \cos (z)-2+z^{2}\right)^{2}} \quad$ at $z=0$.

Hint: Work with $1 / f_{1}(z)$.
Solution: Let $g=1 / f_{1}=\left(2 \cos (z)-2+z^{2}\right)^{2}$. We write out the Taylor series for this

$$
g(z)=\left(2\left(1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\ldots\right)-2+z^{2}\right)^{2}=z^{8}\left(\frac{2}{4!}+a_{9} z++\ldots\right)
$$

Since g has a zero of order $8, f_{1}=1 / g$ has a pole of order 8 at $z=0$.
(b) Find the residue of $f_{2}(z)=\frac{z^{2}+1}{2 z \cos (z)}$ at $z=0$.

Solution: Since $\cos (0)=1, g(z)=z f_{2}(z)$ is analytic at $z=0$. This tells us the pole is simple and $\operatorname{Res}\left(f_{2}, 0\right)=g(0)=1 / 2$.
(c) Let $f_{3}(z)=\frac{\mathrm{e}^{z}}{z(z+1)^{3}}$. Find all the isolated singularities and compute the residue at each one.
Solution: There are poles at $z=0$ and $z=-1$.
At $z=0$: the pole is simple,

$$
\operatorname{Res}\left(f_{3}, 0\right)=\lim _{z \rightarrow 0} z f_{3}(z)=1 \text { (by inspection). }
$$

At $z=-1: \quad g(z)=(z+1)^{3} f_{3}(z)=\frac{\mathrm{e}^{z}}{z}$ is analytic at $z=-1$. If $g(z)=a_{0}+a_{1}(z+1)+\ldots$, then $\operatorname{Res}(f,-1)=a_{2}=g^{\prime \prime}(-1) / 2$!. Now it's easy to compute that $\operatorname{Res}\left(f_{3},-1\right)=-5 \mathrm{e}^{-1} / 2$.
(d) Find the residue at infinity of $f_{4}(z)=\frac{1}{1-z}$.

Solution: First we find

$$
g(z)=\frac{1}{w^{2}} f_{4}(1 / w)=\frac{1}{w^{2}} \cdot \frac{1}{1-1 / w}=\frac{1}{w(w-1)}
$$

So

$$
\operatorname{Res}\left(f_{4}, \infty\right)=-\operatorname{Res}(g, 0)=1
$$

(e) Let $f_{5}(z)=\frac{\cos (z)}{\int_{0}^{z} f(w) d w}$, where $f(z)$ is analytic and $f(0)=1$. Find the residue at $z=0$. Let $g(z)=\int_{0}^{z} f(w) d w$. So g is analytic and $g(0)=0$ and $g^{\prime}(0)=f(0)=1$. That is g has a simple zero at $z=0$. Thus, $f_{5}(z)=\cos (z) / g(z)$ has a simple pole at $z=0$ and we have,

$$
\operatorname{Res}\left(f_{5}, 0\right)=\frac{\cos (0)}{g^{\prime}(0)}=1
$$

Problem 6. (10 points)
Write the principal part of each function at the isolated singularity. Compute the corresponding residue.
(a) $f_{1}(z)=z^{3} \mathrm{e}^{1 / z}$

Solution: The only singularity is at $z=0$. We know

$$
\mathrm{e}^{1 / z}=1+\frac{1}{z}+\frac{1}{2 z^{2}}+\frac{1}{3!z^{3}}+\frac{1}{4!z^{4}}+\ldots
$$

So,

$$
f_{1}(z)=z^{3}+z^{2}+\frac{z}{2}+\frac{1}{3!}+\frac{1}{4!z}+\ldots
$$

Thus, we have $\operatorname{Res}\left(f_{1}, 0\right)=\frac{1}{24}$.
(b) $f_{2}(z)=\frac{1-\cosh (z)}{z^{3}}$

Solution: The only singularity is at $z=0$. We know

$$
\cosh (z)=1+\frac{z^{2}}{2}+\frac{z^{4}}{4!}+\ldots
$$

So,

$$
f_{2}(z)=\frac{-z^{2} / 2-z^{4} / 4!-\ldots}{z^{3}}=-\frac{1}{2 z}-\frac{z}{4!}-\ldots
$$

Thus, we have $\operatorname{Res}\left(f_{2}, 0\right)=-\frac{1}{2}$.

Problem 7. (8 points)
(a) Let $f(z)=(1+z)^{a}$, computed using the principal branch of log. Give the Taylor series around 0 .

Solution: We'll do this using derivatives. Keeping the branch in mind $f(z)=\mathrm{e}^{a \log (1+z)}$. On the principle branch, $f(0)=1$. Taking derivatives we have

$$
f^{(n)}(z)=a(a-1) \cdots(a-n+1)(1+z)^{a-n}, \quad f^{(n)}(0)=a(a-1) \cdots(a-n+1) .
$$

So

$$
f(z)=1+a z+\frac{a(a-1)}{2} z^{2}+\ldots+\frac{a(a-1) \cdots(a-n+1)}{n!} z^{n}+\ldots=\sum_{n=0}^{\infty}\binom{a}{n} z^{n}
$$

where $\binom{a}{n}$ is defined as $\frac{a(a-1) \cdots(a-n+1)}{n!}$.
The question didn't ask for the following, but they are worth noting.

1. If $a=n$ is a nonnegative integer then the Taylor coefficients are 0 for powers bigger than
n. For such a, f is entire and the radius of convergence is ∞.
2. For all other a the disk of convergence centered at 0 , goes as far as the first singularity, which is at $z=1$. That is, the radius of convergence is 1 .
(b) Does the principal branch of \sqrt{z} have a Laurent expansion in the domain $0<|z|$?

Solution: No, \sqrt{z} is not analytic on the region $0<|z|$. In fact, it is not analytic on any annulus centered at 0 .

Problem 8. (15 points)
Using variations of the geometric series find the following series expansions of

$$
f(z)=\frac{1}{4-z^{2}}
$$

about $z_{0}=1$.
(a) The Taylor series. What is the radius of convergence?
(b) The Laurent series on $1<|z-1|<R_{1}$. What is R_{1} ?
(c) The Laurent series for $|z-1|>3$.
answers: Here is a picture showing the singularities of f and the various regions. The labels are:

$$
A_{1}:|z-1|<1, \quad A_{2}: 1<|z-1|<3, \quad A_{3}: 3<|z-1| .
$$

We'll get a different Laurent series in each region.

The calculations will be easier if we express f using partial fractions

$$
f(z)=\frac{1}{(2-z)(2+z)}=\frac{1}{4(2-z)}+\frac{1}{4(2+z)} .
$$

We write the Laurent series for each piece in each region.
$\frac{1}{2-z}=\frac{1}{1-(z-1)}$.
In A_{1} we have $|z-1|<1$, so the geometric series

$$
\begin{equation*}
\frac{1}{2-z}=\frac{1}{1-(z-1)}=1+(z-1)+(z-1)^{2}+\ldots=\sum_{n=0}^{\infty}(z-1)^{n} \tag{1}
\end{equation*}
$$

converges.
In A_{2} and A_{3} we have $|z-1|>1$, so the geometric series

$$
\begin{equation*}
\frac{1}{2-z}=-\frac{1}{z-1} \cdot \frac{1}{1-1 /(z-1)}=-\sum_{n=1}^{\infty}\left(\frac{1}{z-1}\right)^{n} \tag{2}
\end{equation*}
$$

converges.
Likewise $\frac{1}{2+z}=\frac{1}{3+(z-1)}=\frac{1}{3} \cdot \frac{1}{1+(z-1) / 3}$.
In A_{1} and A_{2} we have $|z-1| / 3<1$, so the geometric series

$$
\begin{equation*}
\frac{1}{2+z}=\frac{1}{3} \cdot \frac{1}{1+(z-1) / 3}=\frac{1}{3} \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{z-1}{3}\right)^{n} \tag{3}
\end{equation*}
$$

converges.
In A_{3} we have $|z-1| / 3>1$, so $3 /|z-1|<1$ and the geometric series

$$
\begin{equation*}
\frac{1}{2+z}=\left(\frac{1}{z-1}\right) \cdot\left(\frac{1}{1+3 /(z-1)}\right)=\frac{1}{z-1} \sum_{n=0}^{\infty}\left(\frac{-3}{z-1}\right)^{n}=\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{(z-1)^{n}} \tag{4}
\end{equation*}
$$

converges.
We can now answer each part using $f(z)=\frac{1}{4}\left(\frac{1}{2-z}+\frac{1}{2+z}\right)$
(a) On $A_{1}: f(z)$ is analytic on A_{1} and the Taylor series is

$$
f(z)=\frac{1}{4}\left(\sum_{n=0}^{\infty}(z-1)^{n}+\frac{1}{3} \sum_{n=0}^{\infty}(-1)^{n} \frac{(z-1)^{n}}{3^{n}}\right)=\sum_{n=0}^{\infty}\left(\frac{1}{4}+\frac{(-1)^{n}}{12 \cdot 3^{n}}\right)(z-1)^{n}
$$

(b) On A_{2} : The Laurent series is

$$
f(z)=-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{(z-1)^{n}}+\frac{1}{12} \sum_{n=0}^{\infty}(-1)^{n} \frac{(z-1)^{n}}{3^{n}}
$$

(c) On A_{3} : The Laurent series is

$$
f(z)=-\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{(z-1)^{n}}+\frac{1}{4} \sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{(z-1)^{n}}=\frac{1}{4} \sum_{n=1}^{\infty}\left(-1+(-3)^{n-1}\right) \frac{1}{(z-1)^{n}} .
$$

Problem 9. (15 points)
(a) Use the residue theorem to compute $\int_{|z|=3} \frac{\mathrm{e}^{i z}}{z^{2}(z-2)(z+5 i)} d z$.

Solution: The function $f(z)=\frac{\mathrm{e}^{i z}}{z^{2}(z-2)(z+5 i)}$ is meromorphic with poles at $0,2,-5 i$. Of these, only 0 and 2 are inside the countour of integration $C:|z|=3$.

So, $\int_{C} f(z) d z=2 \pi i(\operatorname{Res}(f, 0)+\operatorname{Res}(f, 2))$. To finish the problem we must compute the residues.
At $z=0: g(z)=z^{2} f(z)=\frac{\mathrm{e}^{i z}}{(z-2)(z+5 i)}$ is analytic. Thus, $\operatorname{Res}(f, 0)=g^{\prime}(0)=\frac{-12+5 i}{100}$.
(We'll leave it to you to provide the details for finding $g^{\prime}(0)$.)
At $z=2: g(z)=(z-2) f(z)=\frac{\mathrm{e}^{i z}}{z^{2}(z+5 i)}$ is analytic. Thus, $\operatorname{Res}(f, 2)=g(2)=\frac{\mathrm{e}^{2 i}}{4(2+5 i)}$.
We conclude that $\int_{|z|=3} \frac{\mathrm{e}^{i z}}{z^{2}(z-2)(z+5 i)} d z=2 \pi i\left(\frac{-12+5 i}{100}+\frac{\mathrm{e}^{2 i}}{4(2+5 i)}\right)$.
(b) Evaluate $\int_{|z|=1} \mathrm{e}^{1 / z} \sin (1 / z) d z$.

Solution: The integrand $f(z)=\mathrm{e}^{1 / z} \sin (1 / z)$ has a pole at $z=0$ and no other singularities. To compute the residue we multiply series

$$
f(z)=\left(1+\frac{1}{z}+\frac{1}{2!z^{2}}+\ldots\right)\left(\frac{1}{z}-\frac{1}{3!z^{3}}+\ldots\right)=\frac{1}{z}+\frac{1}{z^{2}}+\ldots
$$

Thus, $\operatorname{Res}(f, 0)=1$ and $\int_{|z|=1} f(z) d z=2 \pi i$.
(c) Explain why Cauchy's integral formula can be viewed as a special case of the residue theorem.

Solution: Cauchy's integral formula says: if C is a simple closed curve and f is analytic on and inside C and $\int_{C} \frac{f(z)}{z-z_{0}} f\left(z_{0}\right)=2 \pi i f\left(z_{0}\right)$.
On the other hand, since f is analytic the only singularity of $f(z) /\left(z-z_{0}\right)$ is at $z=z_{0}$. So, the residue theorem says $\int_{C} \frac{f(z)}{z-z_{0}} f\left(z_{0}\right)=2 \pi i \operatorname{Res}\left(f(z) /\left(z-z_{0}\right), z_{0}\right)$.
To see both theorems give the same result we note that z_{0} is a simple pole and $\operatorname{Res}(f(z) /(z-$ $\left.\left.z_{0}\right), z_{0}\right)=f\left(z_{0}\right)$.
Note: the condition f is analytic on C can be relaxed. It is enough the f be analytic inside C and continuous on and inside C. Even this can be further relaxed.

Problem 10. (15 points)
In this problem we will compute $\sum_{-\infty}^{\infty} \frac{1}{n^{2}}$ using the residue theorem. The techniques learned here are general. In particular, the use of $\cot (\pi z)$ is fairly common.
(a) Let $\phi(z)=\pi \cot (\pi z)=\pi \frac{\cos (\pi z)}{\sin (\pi z)}$. At all the singular points give the order of the pole and the residue.
Solution: We know that $g(z)=\sin (\pi z)$ has zeros at all integers n. Also, $g^{\prime}(n)=\pi \cos (n \pi)$ Since this is not zero, the zeros are simple. Therefore the poles of ϕ are simple and

$$
\operatorname{Res}(\phi, n)=\frac{\pi \cos (n \pi)}{\pi \cos (n \pi)}=1
$$

(b) Take the contour C_{N} which is the square with vertices at $\pm(N+1 / 2) \pm i(N+1 / 2)$. Use the Cauchy residue theorem to write an expression for

$$
\int_{C_{N}} \frac{\pi \cot (\pi z)}{z^{2}} d z
$$

You'll need to do some work to compute the residue at $z=0$.
Solution:

C_{N}, with poles inside at the integers
First we compute the residues of f :
At $z=n \neq 0$: Since $1 / n^{2} \neq 0, \operatorname{Res}(f, n)=\operatorname{Res}(\phi, n) / n^{2}=1 / n^{2}$.
At $z=0$: Below we'll show that $\operatorname{Res}(f, 0)=-\pi^{2} / 3$.
The poles inside C_{N} are at $-N,-N+1, \ldots, 0,1,2, \ldots, N$. So, taking into account that the residue at $z=0$ is special, we get

$$
\int_{C_{N}} f(z) d z=2 \pi i \sum_{n=-N}^{N} \operatorname{Res}(f, n)=2 \pi i \sum_{n=-N, n \neq 0}^{N} \frac{1}{n^{2}}-\frac{\pi^{2}}{3}=2 \sum_{n=1}^{N} \frac{1}{n^{2}}-\frac{\pi^{2}}{3}
$$

The last equality uses the fact $1 / n^{2}=1 /(-n)^{2}$.
The last thing we need to do is show how to compute the residue at $z=0$. For the grunge work we'll work with $\cot (z)$. We can bring back the factors of π at the end. We know $\cot (z)$ has a simple pole at $z=0$, so

$$
\cot (z)=\frac{b_{1}}{z}+a_{0}+a_{1} z+a_{2} z^{2}
$$

Because we'll be dividing by z^{2} the residue will come from a_{1}. We compute this as follows:

$$
\begin{aligned}
\cot (z) & =\frac{b_{1}}{z}+a_{0}+a_{1} z+a_{2} z^{2} \\
& =\frac{\cos (z)}{\sin (z)}=\frac{1-z^{2} / 2+\ldots}{z-z^{3} / 3!+\ldots}
\end{aligned}
$$

Cross-multiplying we get

$$
\begin{aligned}
1-\frac{z^{2}}{2}+\ldots & =\left(\frac{b_{1}}{z}+a_{0}+a_{1} z+\ldots\right)\left(z-\frac{z^{3}}{3!}+\ldots\right) \\
& =b_{1}+a_{0} z+\left(a_{1}-\frac{b_{1}}{3}\right) z^{2}+\ldots
\end{aligned}
$$

Equating coefficients of z^{n} we get:
$1=b_{1}$
$0=a_{0}$
$-1 / 2=a_{1}-b_{1} / 3$!, which implies $a_{1}=-1 / 3$.

Thus $\cot (z)=\frac{1}{z}-\frac{z}{3}+\ldots$. This gives us

$$
f(z)=\frac{\pi \cot (\pi z)}{z^{2}}=\frac{\pi}{z^{2}}\left(\frac{1}{\pi z}-\frac{\pi z}{3}+\ldots\right)=\frac{1}{z^{3}}-\frac{\pi^{2}}{3 z}+\ldots
$$

This shows $\operatorname{Res}(f, 0)=-\pi^{2} / 3$ as claimed above.
(c) We'll tell you that $|\cot (\pi z)|<2$ along the contour C_{N}. Use this to show that

$$
\lim _{N \rightarrow \infty} \int_{C_{N}} \frac{\pi \cot (\pi z)}{z^{2}} d z=0
$$

Solution: The length of C_{N} is $2(2 N+1)$. Since $|\cot (\pi z)|<2$, along C_{N} we have

$$
\left|\frac{\pi \cot (\pi z)}{z^{2}}\right| \leq \frac{2 \pi}{(N+1 / 2)^{2}}
$$

So

$$
\left|\int_{C_{N}} \frac{\pi \cot (\pi z)}{z^{2}} d z\right| \leq \int_{C_{N}} \frac{2 \pi}{(N+1 / 2)^{2}} d|z|=\frac{2 \pi}{(N+1 / 2)^{2}} \cdot 4(2 N+1) .
$$

This last expression clearly goes to 0 as N goes to infinity, so we have shown what we need to.
(d) Use parts (b) and (c) to compute $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Solution: By parts (b) and (c), letting $N \rightarrow \infty$, we have

$$
\lim _{N \rightarrow \infty} \int_{C_{n}} f(z) d z=2 \pi i\left[2 \sum_{n=1}^{\infty} \frac{1}{n^{2}}-\frac{\pi^{2}}{3}\right]=0 .
$$

This implies $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.

Problems below here are not assigned. Do them just for fun.
Problem Fun 1. (No points)
By considering the 3 series $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}, \quad \sum_{n=1}^{\infty} \frac{z^{n}}{n}, \quad \sum_{n=1}^{\infty} z^{n}, \quad$ show that a power series may converge on all, some or no points on the boundary of its disk of convergence.
Solution: For all three series the radius of convergence is $R=1$. So the boundary of the disk of convergence is the circle $|z|=1$. (Often this is called the circle of convergence, which is a slightly confusing name as this problem shows.)
Since $\sum \frac{1}{n^{2}}$ is convergent, the series $\sum \frac{z^{n}}{n^{2}}$ converges absolutely everywhere on the circle $|z|=1$.
Since $\sum \frac{(-1)^{n}}{n}$ converges (conditionally not absolutely) and $\sum \frac{1}{n}$ diverges. We see that the series $\sum \frac{z^{n}}{n}$ converges at some points on $|z|=1$. (In fact, it turns out this series converges at every point on the circle except at $|z|=1$.)

When $|z|=1$ the terms in $\sum z^{n}$ do not decay to 0 . Therefore the series is not convergent for any z on the unit circle.

Problem Fun 2. (No points)
Suppose that there exists a function $f(z)$ which is analytic at $z=0$ and which satisfies the differential equation

$$
(1+z) f^{\prime}(z)=2 f(z), \text { with } f(0)=1
$$

(a) Solve this equation to get a closed-form expression for $f(z)$.

Solution: The differential equation is separable: $f^{\prime} / f=2 /(1+z)$. Solving we get $f(z)=$ $C(z+1)^{2}$. The inital condition $f(0)=1$ determines $C=1$. So, $f(z)=(z+1)^{2}$.
(b) Find the formula for the power series coefficients of $f(z)$ directly from the differential equation.
Solution: We express $f(z)$ and $f^{\prime}(z)$ as Taylor series

$$
\begin{aligned}
& f(z)=a_{0}+a_{1} z+\ldots=\sum_{n=0}^{\infty} a_{n} z^{n} \\
& f^{\prime}(z)=a_{1}+\ldots=\sum_{n=0}^{\infty} n a_{n} z^{n-1}
\end{aligned}
$$

Multiplying we get and substituting into the DE we get

$$
(1+z) f^{\prime}(z)=\sum_{n=0}^{\infty}\left(n a_{n}+(n+1) a_{n+1}\right) z^{n}=\sum 2 a_{n} z^{n} .
$$

Equation coefficients gives the relation: $2 a_{n}=n a_{n}+(n+1) a_{n+1}$. A little algebra converts this to the recursive formula

$$
a_{n+1}=\frac{(2-n) a_{n}}{1+n} .
$$

The initial condition gives $f(0)=a_{0}=1$. Using the recursion relation we find $a_{1}=2$, $a_{2}=1, a_{m}=0$ for $m \geq 3$. Thus, $f(z)=1+2 z+z^{2}$.
(c) Check your answer to part(b) against the Taylor series obtained by expanding out the closed-form expression for the solution found in part (a).
Solution: The answers to parts (a) and (b) are clearly the same.

Problem Fun 3. (No points) Show that $|\cot (\pi z)|<2$ along the contour in problem 10.
Hint, show that along the vertical sides $|\cot (\pi z)|<1$, while along the horizontal sides $|\cot (\pi z)|<2$.
Solution: We know

$$
\cot (\pi z)=\frac{\cos (\pi z)}{\sin (\pi z)}=i \frac{\mathrm{e}^{i \pi z}+\mathrm{e}^{-i \pi z}}{\mathrm{e}^{i \pi z}-\mathrm{e}^{-i \pi z}}=\frac{i\left(\mathrm{e}^{2 \pi i z}+1\right)}{\mathrm{e}^{2 i \pi i z}-1} .
$$

The right side of C_{N} is along the line $(N+1 / 2)+i y$. On this line

$$
|\cot (\pi z)|=\left|\frac{\mathrm{e}^{i(2 N+1) \pi} \mathrm{e}^{-2 \pi y}+1}{\mathrm{e}^{i(2 N+1) \pi} \mathrm{e}^{-2 \pi y}-1}\right|=\left|\frac{-\mathrm{e}^{-2 \pi y}+1}{-\mathrm{e}^{-2 \pi y}-1}\right|
$$

Since $\mathrm{e}^{-2 \pi y}>0$, the denominator is clearly larger in magnitude than the numerator. So $|\cot (\pi z)|<1$ along the right side of C_{N}.
Since the left side of C_{N} is minus the right side and cot is an odd function, the result holds along the left side as well.
The top side of C_{N} is along the line $x+i(N+1 / 2)$. So along this line

$$
|\cot (\pi z)|=\left|\frac{\mathrm{e}^{2 \pi i x} \mathrm{e}^{-(2 N+1) \pi}+1}{\mathrm{e}^{2 \pi i x} \mathrm{e}^{-(2 N+1) \pi}-1}\right| \leq \frac{1+\mathrm{e}^{-(2 N+1) \pi}}{1-\mathrm{e}^{-(2 N+1) \pi}}
$$

This is of the form $\frac{1+a}{1-a}$, with $0<a \leq \mathrm{e}^{-\pi}$. Since $(1+a) /(1-a)$ is an increasing function, the maximum is at $a=\mathrm{e}^{-\pi}$ and this is clearly less than 2 (in fact, less than 1.1).

Again, by symmetry the result holds on the bottom also.
We have shown that, along $C_{N},|\cot (\pi z)|<2$.
Problem Fun 4. (No points) Suppose the radius of convergence of $\sum_{n=0}^{\infty} a_{n} z^{n}$ is R. Show that the radius of convergence of $\sum_{n=0}^{\infty} n^{2} a_{n} z^{n} \quad$ is also R.
Solution: Idea: if the we can use ratio test then the factor of n^{2} does not change the limit of the ratio test. That is,

$$
L=\lim _{m \rightarrow \infty} \frac{(n+1)^{2}\left|a_{n+1} z^{n+1}\right|}{n^{2}\left|a_{n} z^{n}\right|}=\lim \frac{(n+1)^{2}}{n^{2}} \lim \frac{\left|a_{n+1} z\right|}{\left|a_{n}\right|}=\lim \frac{\left|a_{n+1} z\right|}{\left|a_{n}\right|}
$$

Since we get the same limit with or without the factor of n^{2}, the radius of convergence is the same in both cases.

The problem is that the limit might not exist. We offer two more technical proofs.
Proof 1. Let $f(z)=\sum_{n=0} a_{n} z^{n}$. We know that $f(z)$ is anlaytic inside the radius of convergence R. By Taylor's theorem we also know that

$$
f^{\prime}(z)=\sum_{n=0}^{\infty} n a_{n} z^{n-1}
$$

has the same radius of convergence. Thus $g(z)=z f^{\prime}(z)=\sum_{n=0}^{\infty} n a_{n} z^{n}$ also has radius of convergence R. Continuing in the same way, $z g^{\prime}(z)=\sum_{n=0}^{\infty} n^{2} a_{n} z^{n}$ has radius of convergence R.

Proof 2. Pick z with $|z|=r<R$. Then pick r_{1} with $r<r_{1}<R$. Since the original series has radius of convergence $R, \sum\left|a_{n}\right| r_{1}^{n}$ converges. Now, since $r_{1} / r>1$, we know

$$
\lim _{n \rightarrow \infty} \frac{n^{2} r^{n}}{r_{1}^{n}}=\lim \frac{n^{2}}{\left(r_{1} / r\right)^{n}}=0
$$

$\begin{aligned} & \operatorname{Thus} \\ & \text { QED }\end{aligned} \sum\left|n^{2} a_{n} z^{n}\right|=\sum n^{2}\left|a_{n}\right| r^{n}$ converges by asymptotic comparison with $\sum\left|a_{n}\right| r_{1}^{n}$.

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

