
18.04 Problem Set 7, Spring 2018 Solutions 

Problem 1. (21 points)
2𝜋 8 𝑑𝜃 (a) Compute ∫ 5 + 2 cos(𝜃) . 

0 

Solution: Call the integral to compute 𝐼 . We let 𝑧 = e𝑖𝜃 and convert the integral to a line 
integral over the unit circle. As usual, we have 

𝑑𝑧 𝑧 + 1/𝑧 𝑧2 + 1 𝑑𝜃 = and cos(𝜃) = =𝑖𝑧 2 2𝑧 

So 
8 𝑑𝑧 8𝐼 = ∫ ⋅ = ∫ 

|𝑧|=1 5 + 2(𝑧2 + 1)/2𝑧 𝑖𝑧 |𝑧|=1 𝑖(𝑧2 + 5𝑧 + 1) 
𝑑𝑧 

8 −5 ± 
√

21Let 𝑓(𝑧) = 𝑖(𝑧2 + 5𝑧 + 1) . The poles of 𝑓 are at . Of these only 𝑧1 = (−5+
√

21)/22 
is inside |𝑧| = 1. So, by the residue theorem 

(𝑧 − 𝑧1)8 16𝜋 √16𝜋
21

.𝐼 = 2𝜋𝑖 Res(𝑓, 𝑧1) = 2𝜋𝑖 lim
𝑧→𝑧1 𝑖(𝑧2 + 5𝑧 + 1) 

= 2𝑧1 + 5 
= 

As often, the limit was computed using L’Hospital’s rule. The fact that the limit exists 
implies the pole was simple and the limit is its residue. 

2𝜋 𝑑𝜃 (b) Compute ∫ 
0 (3 + 2 cos(𝜃))2 

. 

Solution: Call the integral 𝐼 . Using the computations from part (a) we get 

1 𝑑𝑧 𝑧 𝐼 = ∫ ⋅ = ∫(3 + 2(𝑧2 + 1)/2𝑧)2 𝑖𝑧 𝑖(𝑧2 + 3𝑧 + 1)2 
𝑑𝑧. 

|𝑧|=1 |𝑧|=1 

𝑧 −3 + 
√

5 −3 − 
√

5Let 𝑓(𝑧) = 𝑖(𝑧2 + 3𝑧 + 1)2 
. The poles of 𝑓 are 𝑧1 = and 𝑧2 = . Of these 2 2 

only 𝑧1 is inside |𝑧| = 1. So, by the residue theorem 

𝐼 = 2𝜋𝑖 Res(𝑓, 𝑧1) 

The pole is order 2, so we need to do a little work to compute it. Let 

𝑔(𝑧) = (𝑧 − 𝑧1)2𝑓(𝑧), so Res(𝑓, 𝑧1) = 𝑔′(𝑧1). 

Computing 𝑔′(𝑧1) is not hard. It’s probably easiest to factor the denominator symbolically 
using the roots 𝑧1 and 𝑧2. 

(𝑧 − 𝑧1)2𝑧 𝑧 𝑔(𝑧) = =𝑖(𝑧 − 𝑧1)2(𝑧 − 𝑧2)2 𝑖(𝑧 − 𝑧2)2 
. 

By direct computation using the quotient rule we have 

(𝑧1 − 𝑧2)2 − 2𝑧1(𝑧1 − 𝑧2) 3
√

5𝑔′(𝑧1) = =𝑖(𝑧1 − 𝑧2)4 25𝑖 . 

1 
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6𝜋
√

5The calculation was done using 𝑧1 − 𝑧2 =
√

5. Thus 𝐼 = 2𝜋𝑖 Res(𝑓, 𝑧1) = .25 
2𝜋 sin2(𝜃) 2𝜋 (c) Compute ∫ 𝑎 + 𝑏 cos(𝜃) 

𝑑𝜃, 𝑎 > |𝑏| > 0. (Answer: 𝑏2 
(𝑎 − 

√
𝑎2 − 𝑏2).)

0 

Solution: As usual, call the integral in question 𝐼 . The conversion of this integral to one 
over the unit circle is similar to the previous parts. On the unit circle 𝑧 = e𝑖𝜃, so: 

sin2(𝜃) = (𝑧 − 1/𝑧 
2 (𝑧2 − 1)2

) = .2𝑖 −4𝑧2 

After a little algebra we have 𝐼 = ∫ 𝑓(𝑧) 𝑑𝑧, where 
|𝑧|=1 

sin2(𝜃) 1 (𝑧2 − 1)2 (𝑧2 − 1)2
𝑓(𝑧) = ⋅ =𝑎 + 𝑏 cos(𝜃) 𝑖𝑧 −2𝑖𝑧2(𝑏𝑧2 + 2𝑎𝑧 + 𝑏) 

= −2𝑖𝑏𝑧2(𝑧2 + 2𝑎𝑧/𝑏 + 1) . 

−𝑎 + 
√

𝑎2 − 𝑏2 −𝑎 − 
√

𝑎2 − 𝑏2 
The poles of 𝑓(𝑧) are at 0, 𝑧1 = and 𝑧2 = . Only 0 and 𝑧1𝑏 𝑏 
are inside the curve |𝑧| = 1. So, 

𝐼 = 2𝜋𝑖(Res(𝑓, 0) + Res(𝑓, 𝑧1)). 

All that’s left is to slog through computing the residues. 
(𝑧2 − 1)2 

At 𝑧 = 0: Let 𝑔(𝑧) = 𝑧2𝑓(𝑧) = So, Res(𝑓, 0) = 𝑔′(0) = 𝑎/𝑖𝑏2. (This−2𝑖𝑏(𝑧2 + 2𝑎𝑧/𝑏 + 1) . 

last value is not hard to compute.) 

At 𝑧 = 𝑧1: Since the pole is simple this is not too hard to do by brute force. Here’s a 
somewhat more delicate way of doing the computation. Factoring the denominator using 
the poles 𝑧1 and 𝑧2, we have 

(𝑧2 − 1)2
𝑓(𝑧) = −2𝑖𝑏𝑧2(𝑧 − 𝑧1)(𝑧 − 𝑧2) . 

(𝑧1
2 − 1)2 

So, Res(𝑓, 𝑧1) = −2𝑖𝑏𝑧1
2(𝑧1 − 𝑧2) . It is easy to see that 𝑧1𝑧2 = 1 and 𝑧1 −𝑧2 = 2

√
𝑎2 − 𝑏2/𝑏. 

So, multiplying top and bottom by 𝑧2
2 we get 

𝑧2
2 (𝑧1

2 − 1)2 (𝑧2𝑧1
2 − 𝑧2)2 (𝑧1 − 𝑧2)2 (𝑧1 − 𝑧2) 

√
𝑎2 − 𝑏2 

Res(𝑓, 𝑧1) = ⋅ = .𝑧2
2 −2𝑖𝑏𝑧1

2(𝑧1 − 𝑧2) 
= −2𝑖𝑏𝑧2

2𝑧1
2(𝑧1 − 𝑧2) 

= −2𝑖𝑏(𝑧1 − 𝑧2) 
= −2𝑖𝑏 𝑖𝑏2 

Thus, √
𝑎2 − 𝑏2 2𝜋(𝑎 − 

√
𝑎2 − 𝑏2)𝐼 = 2𝜋𝑖 ( 

𝑎 ) =𝑖𝑏2 
− 𝑖𝑏2 𝑏2 

as claimed. 
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Problem 2. (21 points)
∞ 𝑑𝑥 (a) Compute ∫ (Answer: 𝜋).

−∞ 𝑥2 + 2𝑥 + 2 . 

1Solution: Let 𝐼 be the integral in question. Let 𝑓(𝑧) = 𝑧2 + 2𝑧 + 2 . Since the denominator 

decays like 1/𝑧2 we can use a semicircular contour. 

Re(z)

Im(z)

R−R

CR

C1

−1 + i

The residue theorem implies ∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 ∑ residues of 𝑓 inside the contour. We 
𝐶1+𝐶𝑅 

examine each of the pieces in this equation. 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0 by Theorem 9.1 in the Topic 9 notes. 
𝑅→∞ 𝐶𝑅 

lim𝑅→∞ ∫𝐶1 
𝑓(𝑧) 𝑑𝑥 = 𝐼 (this is clear). 

So letting 𝑅 → ∞ we have 𝐼 = 2𝜋𝑖 ∑ residues of 𝑓 in the upper half-plane. 
The poles of 𝑓 are at 𝑧1 = −1 + 𝑖 and 𝑧2 = −1 − 𝑖. Only 𝑧1 is in the upper half-plane. The 
pole is simple so, 

1 1Res(𝑓, 𝑧1) = lim (𝑧 − 𝑧1)𝑓(𝑧) = 
𝑧→𝑧1 2𝑧1 + 2 

= 2𝑖 . 

1Thus 𝐼 = 2𝜋𝑖 ⋅ 𝜋 .2𝑖 = 

𝑥2 

(b) Compute ∫
∞ 

(Answer: 𝜋/3.)(𝑥2 + 1)(𝑥2 + 4) 
𝑑𝑥. 

−∞ 

𝑧2 

Solution: Let 𝐼 be the integral in question. And let 𝑓(𝑧) = We proceed (𝑧2 + 1)(𝑧2 + 4) . 

exactly as in part (a). Using the contour shown below we find 

𝐼 = 2𝜋𝑖 ∑ residues of 𝑓 in the upper half-plane. 

Re(z)

Im(z)

R−R

CR

C1

i

2i

Contour for part (b). 
The poles of 𝑓 are at ±𝑖 and ±2𝑖. Only 𝑖 and 2𝑖 are in the upper half-plane. All we need 
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to do now is compute their residues. 

(𝑧 − 𝑖)𝑧2 𝑖2 −1Res(𝑓, 𝑖) = lim(𝑧 − 𝑖)𝑓(𝑧) = lim
𝑧→𝑖 𝑧→𝑖 (𝑧2 + 1)(𝑧2 + 4) 

= 2𝑖(𝑖2 + 4) 
= 6𝑖 

(𝑧 − 2𝑖)𝑧2 4𝑖2 1Res(𝑓, 2𝑖) = lim (𝑧 − 2𝑖)𝑓(𝑧) = lim
𝑧→2𝑖 𝑧→2𝑖 (𝑧2 + 1)(𝑧2 + 4) 

= 4𝑖(4𝑖2 + 1) 
= 3𝑖 . 

In both cases we computed the limit using L’Hospital’s rule. Since the limit existed we 
know the pole is simple and the limit is the residue. This gives 

𝐼 = 2𝜋𝑖 (− 
1 𝜋

3 .6𝑖 + 3𝑖
1 ) = 

∞ 1 2𝜋
√

3(c) Show ∫ 𝑥3 + 1 
𝑑𝑥 = by integrating around the boundary of the circular sector 90

shown and letting 𝑅 → ∞. The vertex angle of the sector is 2𝜋/3. 

Re(z)

Im(z)

R

Circular sector with vertex angle 2𝜋/3. 
1Solution: Let 𝐼 be the integral in question. And let 𝑓(𝑧) = We proceed similarly 𝑧3 + 1 . 

to parts (a) and (b). Here the contour is the circular sector shown. As usual, we put signs 
on the pieces of the contour that make the parametrization easier. 

Re(z)

Im(z)

RC1

CR

−C3
eiπ/3

The poles of 𝑓 are at e𝑖𝜋/3, −1, e−𝑖𝜋/3. The only one inside the contour is 𝑧1 = e𝑖𝜋/3. So 

∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 Res(𝑓, 𝑧1).
𝐶1+𝐶𝑅−𝐶3 

Looking at each segment of the curve in turn we have 
∞ 

On 𝐶1: lim ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑥3
1
+ 1 

𝑑𝑥 = 𝐼. 
R→∞ 𝐶1 0 

On 𝐶3: Parametrize the curve by 𝛾(𝑡) = 𝑡e𝑖2𝜋/3, where 𝑡 runs from 0 to 𝑅. So 

∞ 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ 𝑡3
1
+ 1e𝑖2𝜋/3 𝑑𝑡 = e𝑖2𝜋/3𝐼. 

R→∞ 𝐶3 0 
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Since |𝑓(𝑧)| ≈ 1/|𝑧|3, the same argument as for semicircles shows that 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0.
𝑅→∞ 𝐶𝑅 

Putting it together we have 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = (1 − e𝑖2𝜋/3)𝐼 = 2𝜋𝑖 Res(𝑓, 𝑧1).
𝑅→∞ 𝐶1+𝐶𝑅−𝐶3 

All that’s left is to compute the residue and do some algebra. 

𝑧 − 𝑧1 1 1Res(𝑓, 𝑧1) = lim = 
𝑧→𝑧1 𝑧3 + 1 

= 3𝑧1
2 3e𝑖2𝜋/3 

. 

So, 

2𝜋𝑖 2𝜋𝑖 𝐼 = 3e2𝜋𝑖/3(1 − e𝑖2𝜋/3) 
= 3(e2𝜋𝑖/3 − e𝑖4𝜋/3)

2𝜋𝑖 (use e𝑖4𝜋/3 = e−𝑖2𝜋/3)= 3(e𝑖2𝜋/3 − e−𝑖2𝜋/3)
𝜋 𝜋 2𝜋 = 3(e𝑖2𝜋/3 − e−𝑖2𝜋/3)/2𝑖 = 3 sin(2𝜋/3) 

= 3
√

3. 

Problem 3. (14 points)
∞ cos(2𝑥)(a) Compute ∫ 𝑥2 + 1 

𝑑𝑥. 
−∞ 

Solution: Let 𝐼 be the integral in question. We start with complex replacement: Let 

∞ e𝑖2𝑥 

𝐼 ̃ = ∫ 𝑥2 + 1 
𝑑𝑥. 

−∞ 

So, 𝐼 = Re(𝐼)̃ . 
Consider the following contour 

Re(z)

Im(z)

C1

CR

−R R

2Ri

i

e𝑖2𝑧 Now, let 𝑓(𝑧) = 𝑧2+1 . Theorem 9.2 in the notes (we could also use Theorem 9.1 here) 
implies that 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0.
𝑅→∞ 𝐶𝑅 
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The only pole of 𝑓 inside the contour is 𝑧 = 𝑖. So, as usual, we find 

e−2
𝐼 ̃ = 2𝜋𝑖 Res(𝑓, 𝑖) = 2𝜋𝑖 ⋅ = e−2𝜋. 2𝑖 

Finally: 𝐼 = Re(𝐼)̃ = e−2𝜋. . 
cos(2𝑥)(b) Compute ∫

∞ 

(Answer: 3𝜋/(2𝑒2).)
−∞ (𝑥2 + 1)2 

𝑑𝑥. 

Solution: This is nearly identical to part (a). In this problem the denominator is squared. 
e𝑖2𝑧 

So very briefly, 𝑓(𝑧) = 𝐼),̃ where 𝐼 ̃ = 2𝜋𝑖 Res(𝑓, 𝑖). (𝑧2 + 1)2 
and 𝐼 = Re( 

To compute the residue we make the following calculation: 
e𝑖2𝑧 (𝑧 − 𝑖)2e𝑖2𝑧 

𝑔(𝑧) = (𝑧 − 𝑖)2𝑓(𝑧) = = and Res(𝑓, 𝑖) = 𝑔′(𝑖).(𝑧2 + 1) (𝑧 + 𝑖)2 , 

−3𝑖e−2 3𝜋e−2 

This calculation is straightforward, we get 𝑔′(𝑖) = , so 𝐼 ̃ = . Finally, 𝐼 =4 2
3𝜋e−2 

Re(𝐼)̃ = .2 

Principal value. 
Recall if 𝑓(𝑥) is continuous on the real axis except at, say, two points 𝑥1 < 𝑥2 then the 
principal value of the integral along the entire 𝑥-axis is defined by 

∞ 𝑥1−𝑟1 𝑥2−𝑟2 𝑅 

p.v. ∫ = lim [∫ 𝑓(𝑥) 𝑑𝑥 + ∫ 𝑓(𝑥) 𝑑𝑥 + ∫ 𝑓(𝑥) 𝑑𝑥.] 
−∞ −𝑅 𝑥1+𝑟1 𝑥2+𝑟2 

Here the limit is taken as 𝑅 → ∞, 𝑟1 → 0, 𝑟2 → 0. The extension to more points of 
discontinuity should be clear. 

Problem 4. (14 points)
∞ e3𝑖𝑥 

(a) Compute p.v. ∫ 𝑥 − 2𝑖 𝑑𝑥. 
−∞ 

Solution: In this case, the integrand has no poles along the real axis. So, the principal value 
only requires that we integrate over a symmetric interval [−𝑅, 𝑅] and let 𝑅 go to infinity. 

e3𝑖𝑧 

Let 𝑓(𝑧) = 𝑓 has one pole at 𝑧 = 2𝑖. The residue is easy to compute: Res(𝑓, 2𝑖) = 𝑧 − 2𝑖 . 
e−6. 

Re(z)

Im(z)

C1

CR

−R R

2Ri

2i
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The residue theorem implies 

∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 Res(𝑓, 2𝑖) = 2𝜋𝑖e−6. (1)
𝐶1+𝐶𝑅 

Looking at each piece: 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0 (Theorem 9.2 in the Topic 9 notes). 
𝑅→0 𝐶𝑅 

∞ e3𝑖𝑥 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = p.v. ∫ 𝑥 − 2𝑖 𝑑𝑥. (This is obvious). 
𝑅→∞ 𝐶1 −∞ 

Thus, letting 𝑅 → ∞ in Equation 1, we have 

∞ e3𝑖𝑥 

p.v. ∫ 𝑥 − 2𝑖 𝑑𝑥 = 2𝜋𝑖e−6. 
−∞ 

∞ cos(𝑥) if Im(𝑤) > 0 (b) Derive the formula p.v. ∫ −𝜋𝑖e−𝑖𝑤 
−∞ 𝑥 − 𝑤 

𝑑𝑥 = {𝜋𝑖e𝑖𝑤 

if Im(𝑤) < 0. 
Solution: Because 𝑤 is complex our complexification trick is not going to work. Instead we 

e𝑖𝑥 + e−𝑖𝑥 

work with the formula cos(𝑥) = . Using this formula we can break the integral 2
into two pieces. 

∞ cos(𝑥) ∞ e𝑖𝑥 + e−𝑖𝑥 ∞ e𝑖𝑥 ∞ e−𝑖𝑥 

p.v. ∫ 𝑥 − 𝑤 
𝑑𝑥 = p.v. ∫ 2(𝑥 − 𝑤) 

𝑑𝑥 = p.v. ∫ 2(𝑥 − 𝑤) 
𝑑𝑥 + p.v. ∫ 2(𝑥 − 𝑤) 

𝑑𝑥 
−∞ −∞ −∞ −∞ 

(2) 
We’ll apply the residue theorem on a different contour for each piece. 

e𝑖𝑧 e−𝑖𝑧 

Let 𝑓1(𝑧) = 2(𝑧 − 𝑤) . Consider the following two contours. 2(𝑧 − 𝑤) 
and 𝑓2(𝑧) = 

Re(z)

Im(z)

C1

CR1

−R1 R1

2R1i

w

Re(z)

Im(z)

C2

−CR2

−R2 R2

−2R2i

w

We can work with the contour on the left with 𝑓1 (Topic 9 notes, Theorem 9.2a) and with 
the contour on the right for 𝑓2 (same theorem part b). Paying attention to the sign in the 
exponents. These theorems imply 

𝑅
lim 
1→∞ 

∫ 𝑓1(𝑧) 𝑑𝑧 = 0, 
𝑅
lim 
2→∞ 

∫ 𝑓2(𝑧) 𝑑𝑧 = 0. 
𝐶𝑅1 

𝐶𝑅2 

The case Im(𝑤) > 0. 
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For now make the assumption Im(𝑤) > 0. Both 𝑓1 and 𝑓2 have their only pole at 𝑧 = 𝑤. 
Since Im(𝑤) > 0, 𝑤 is inside the left-hand contour and the right-hand contour contains no 
poles. So, 

∫ 𝑓1(𝑧) 𝑑𝑧 = 2𝜋𝑖 Res(𝑓1, 𝑤) = 𝜋𝑖e𝑖𝑤 

𝐶1+𝐶𝑅1 

∫ 𝑓2(𝑧) 𝑑𝑧 = 0. 
𝐶1−𝐶𝑅2 

Now we finish the problem in the usual manner: letting 𝑅1 and 𝑅2 go to infinity we have 

∞ ∞ ∞cos(𝑥)p.v. ∫ 𝑥2 + 1 
𝑑𝑥 = p.v. ∫ 𝑓1(𝑥) 𝑑𝑥 + p.v. ∫ 𝑓2(𝑥) 𝑑𝑥 = 𝜋𝑖e𝑖𝑤 + 0 = 𝜋𝑖e𝑖𝑤. 

−∞ −∞ −∞ 

This is exactly what we were supposed to show. 
The case Im(𝑤) < 0 is the same. The minus sign occurs because the curve 𝐶1 + 𝐶𝑅2 

is 
traversed in a clockwise direction. 

Problem 5. (14 points) 
∞ e𝑖𝑥 

(a) Derive the formula p.v. ∫ (𝑥 − 1)(𝑥 − 2) 
𝑑𝑥 = 𝜋𝑖(e2𝑖 − e𝑖). 

−∞ 

e𝑖𝑧 

Solution: Call the principal value in question 𝐼 . Let 𝑓(𝑧) = (𝑧 − 1)(𝑧 − 2) . Consider the 

following contour 

Re(z)

Im(z)

1 2C1 C3 C5

CR

−C2 −C4

−R 1−r1 1+r1 2−r2 2+r2 R

2Ri

First we’ll look at the integrals over each piece. 

On 𝐶𝑅: lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0, by Theorem 9.2 in the Topic 9 notes. 
𝑅→∞ 𝐶𝑅 

On 𝐶2: 
𝑟
lim 
1→0

∫
𝐶2 

𝑓(𝑧) 𝑑𝑧 = 𝜋𝑖 Res(𝑓, 1) = −𝜋𝑖e𝑖. 𝑓 has a simple pole at 𝑧 = 1. So, this 

followis using Topic 9 Theorem 9.13 on integrating over a semicircle around a simple pole. 

On 𝐶4: 
𝑟
lim 
2→0

∫
𝐶4 

𝑓(𝑧) 𝑑𝑧 = 𝜋𝑖 Res(𝑓, 2) = 𝜋𝑖e2𝑖. The reasoning is the same as for 𝐶2. 

On 𝐶1 + 𝐶3 + 𝐶5: Clearly lim ∫𝐶1+𝐶3+𝐶5 
𝑓(𝑧) 𝑑𝑧 = p.v. ∫∞ 

−∞ 
𝑓(𝑥) 𝑑𝑥. Here the limit is taken 

as 𝑅 → ∞ and 𝑟1, 𝑟2 → 0. 
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Since there are no poles of 𝑓(𝑧) inside the closed contour we have 

∫ 𝑓(𝑧) 𝑑𝑧 = 0. 
𝐶1−𝐶2+𝐶3−𝐶4+𝐶5+𝐶𝑅 

So, taking limits and doing a little algebra this becomes 

p.v. ∫
∞

𝑓(𝑥) 𝑑𝑥 = 𝜋𝑖(e2𝑖 − e𝑖). 𝑄𝐸𝐷 
−∞ 

sin2(𝑥)(b) Derive the formula ∫
∞ 

𝑑𝑥 = 𝜋/2.𝑥2
0 

1 − cos(2𝑥) 1Hint: sin2(𝑥) = = 2 
Re(1 − e2𝑖𝑥).2 

Solution: Call the integral in question 𝐼 . First note that there is not problem
∞
at 𝑥 = 0 

since the integrand is continuous there. There is also no problem at ∞ because ∫ 1/𝑥2 𝑑𝑥 
1 

converges. We start by using symmetry to get 

∞ sin2(𝑥)2𝐼 = p.v. ∫ 𝑑𝑥. 𝑥2
−∞ 

Since the integral is known to converge the principal value will give the same value and is 
convenient to use with indented contours. 

1 − e𝑖2𝑧 

Now, follow the hint and let 𝑓(𝑧) = . Note that since the numerator is 0 at 𝑧 = 0,2𝑧2
𝑓 has a simple pole at 𝑧 = 0. 
We use the indented contour shown. 

Re(z)

Im(z)

0

C1 C3

CR

−C2

−R −r r R

2Ri

We’ll make our argument a little more quickly than in previous problems. By Cauchy’s 
theorem 

∫ 𝑓(𝑧) 𝑑𝑥 = 0. 
𝐶1−𝐶2+𝐶3+𝐶𝑅 

By the usual limit theorems 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0 and lim ∫ 𝑓(𝑧) 𝑑𝑧 = 𝜋𝑖 Res(𝑓, 0) 
𝑅→∞ 𝑟→0 𝐶𝑅 𝐶2 

By definition 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = p.v. ∫
∞ 

𝑓(𝑥) 𝑑𝑥. 
𝑅→∞, 𝑟→0 𝐶1+𝐶3 −∞ 
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Computing Res(𝑓, 0): 

1 − (1 + 𝑖2𝑧 − 4𝑧2/2 − …) = − 𝑖 𝑓(𝑧) = 𝑧 + 𝑧 + … 2𝑧2 

So, Res(𝑓, 0) = −𝑖. 

Putting it all togother: 2𝐼 = p.v. ∫
∞

𝑓(𝑥) 𝑑𝑥 = 𝜋𝑖 Res(𝑓, 0) = 𝜋. So, 𝐼 = 𝜋/2 ,
−∞ 

Problem 6. (7 points)
∞ √𝑥 Compute ∫ 𝑥2 + 1 

𝑑𝑥. (Answer: 𝜋/
√

2.)
0 

Solution: As always, call the integral 𝐼 . We use the contour 

Re(z)

Im(z)

CR

C1

−C2

−Cr

i

−i

Here the inner circle has radius 𝑟 and the outer circle has radius 𝑅.√𝑧 Let 𝑓(𝑧) = For 𝑓 we make a branch cut along the positive real axis and use the𝑧2 + 1 . 
branch with 0 < arg(𝑧) < 2𝜋. 
Inside the contour 𝑓 has poles at ±𝑖. So, 

∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖(Res(𝑓, 𝑖) + Res(𝑓, −𝑖)). (3)
𝐶1+𝐶𝑅−𝐶2−𝐶𝑟 

We look at the pieces of the contour separately. 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0 (Usual reason using Theorem 9.1.) 
𝑅→∞ 𝐶𝑅 

𝑟1/2
lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0 (On 𝐶3 we have |𝑓(𝑧) = is small for small 𝑟.)
𝑟→0 𝐶3 

|1 + 𝑧2|
∞ √𝑥 lim ∫ 𝑓(𝑧) 𝑑𝑧 = ∫ (Since, on 𝐶1, arg(𝑧) ≈ 0, so 

√𝑧 ≈ 
√𝑥 and 𝑓(𝑧) ≈ 𝑓(𝑥).)

𝑅→∞, 𝑟→0 1 + 𝑥2 
𝑑𝑥 = 𝐼 

𝐶1 0 
∞ √𝑥 lim ∫ 𝑓(𝑧) 𝑑𝑧 = − ∫ (Since, on 𝐶2, arg(𝑧) ≈ 2𝜋, so 

√𝑧 ≈ −√𝑥 and 𝑓(𝑧) ≈ −𝑓(𝑥).)
𝑅→∞, 𝑟→0 1 + 𝑥2 

𝑑𝑥 = −𝐼 
𝐶2 0 
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Taking the limit in Equation 3, this gives 

2𝐼 = 2𝜋𝑖(Res(𝑓, 𝑖) + Res(𝑓, −𝑖)).
√𝑧 All that’s left is to compute the residues. Since 𝑓(𝑧) = (𝑧 + 𝑖)(𝑧 − 𝑖) , the residues are 

√
𝑖 (e𝑖𝜋/2)1/2 

= 
e𝑖𝜋/4 1 + 𝑖 Res(𝑓, 𝑖) = = =2𝑖 2𝑖 2𝑖 2

√
2𝑖 

√
−𝑖 (e𝑖3𝜋/2)1/2 

= 
e𝑖3𝜋/4 1 − 𝑖 Res(𝑓, −𝑖) = = = −2𝑖 −2𝑖 2𝑖 2

√
2𝑖 

∞ 

2
√

2𝑖 
+ 

1 − 𝑖 2𝜋 
√𝑥 √𝜋

2
. .So 2𝐼 = 2𝜋𝑖 ( 

1 + 𝑖 √
2

. Finally, we have ∫ 1 + 𝑥2 𝑑𝑥 = 
2
√

2𝑖
) = 

0 

Problem 7. (15 points) 

Let 𝑓(𝑥) = {1 for −1 < 𝑥 < 1 

0 elsewhere. 

̂ 𝑓(𝑥)e−𝑖𝜔𝑥 𝑑𝑥.(a) (5) Solution: Compute the Fourier transform 𝑓(𝜔) = ∫
∞ 

−∞ 

Solution: We just compute the integral 
∞ 1

̂ 𝑓(𝑥)e−𝑖𝜔𝑥 𝑑𝑥 = ∫ e−𝑖𝜔𝑥 𝑑𝑥 𝑓(𝜔) = ∫ 
−∞ −1

1 e−𝑖𝜔𝑥 e𝑖𝜔 − e−𝑖𝜔 2 sin(𝜔) = ∣ = = .−𝑖𝜔 𝑖𝑤 𝜔 −1 

(b) (10) Show that the formula for the Fourier inverse gives 𝑓(𝑥). That is, show 

𝑓(𝜔)e𝑖𝜔𝑥 𝑑𝜔. 2𝜋
1 ∫𝑓(𝑥) = 

∞ 
̂

−∞ 

Hint: this will require an indented contour around 0. 

Solution: We want to show: 𝑓(𝑥) = 
∞ 

̂𝑓(𝜔) 𝑑𝜔. We start computing: 2𝜋
1 ∫ 

−∞ 

∞ ∞ e𝑖𝜔 − e−𝑖𝜔 ∞ e𝑖𝜔(𝑥+1) − e𝑖𝜔(𝑥−1)1 ̂ 1 e𝑖𝜔𝑥 𝑑𝜔 = 
1𝑓(𝜔) 𝑑𝜔 = 𝑑𝜔. 2𝜋 

∫ 2𝜋 
∫ 𝑖𝜔 2𝜋 

∫ 𝑖𝜔 −∞ −∞ −∞ 

Since the entire integral converges, we get the same result if we compute its principal value. 
The advantage is that we can compute the principal value of each piece separately! 
Here are the results for each piece. We derive the results below. 

1 ∞ e𝑖𝜔(𝑥+1) for 𝑥 < −1 
2𝜋 

p.v. ∫ 𝑑𝜔 = {−1/2 (4)𝑖𝑤 1/2 for 𝑥 > −1 −∞ 

1 ∞ e𝑖𝜔(𝑥−1) 

𝑑𝜔 = {−1/2 for 𝑥 < 1 
2𝜋 

p.v. ∫ (5)
−∞ 𝑖𝑤 1/2 for 𝑥 > 1 
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Subtracting these two pieces we have 

⎧0 for 𝑥 < −1 1 ∞ e𝑖𝜔(𝑥+1) ∞ e𝑖𝜔(𝑥−1) {
𝑑𝜔 − 

1 𝑑𝜔 = 1 for −1 < 𝑥 < 1 2𝜋 
∫

−∞ 𝑖𝑤 2𝜋 
∫

−∞ 𝑖𝑤 ⎨{⎩0 for 1 < 𝑥 

This is exactly 𝑓(𝑥) as claimed. 
All that’s left is to use contour integration to prove Equations 4 and 5. We will do this 
quickly. It is nearly identical to Example 9.15 in the Topic 9 notes. 

Let 𝑓𝑎(𝑧) = 
e𝑖𝑎𝑧 

.𝑖𝑧 
We start by assuming that 𝑎 > 0 and use the indented contour shown below on the left. 
The integrand has no poles inside the contour so 

∫ 𝑓𝑎(𝑧) 𝑑𝑧 = 0. 
𝐶1−𝐶2+𝐶3+𝐶𝑅 

Re(z)

Im(z)

0

C1 C3

CR

−C2

−R −r r R

2Ri

Contour for 𝑎 > 0 

Re(z)

Im(z)

0C4 C6

−CR

C5

−R −r r R

−2Ri

Contour for 𝑎 < 0 
Next we break the contour into pieces. 

∞ e𝑖𝑎𝜔 

lim ∫ 𝑓𝑎(𝑧) 𝑑𝑧 = p.v. ∫ 𝑖𝜔 
𝑑𝜔. (This is clear.) 

𝑅→∞, 𝑟→0 𝐶1+𝐶3 −∞ 

lim ∫ 𝑓𝑎(𝑧) 𝑑𝑧 = 0. (Theorem 9.2 in the Topic 9 notes.) 
𝑅→∞ 𝐶𝑅 

lim ∫ 𝑓𝑎(𝑧) 𝑑𝑧 = 𝜋𝑖 Res (e 
𝑖𝑧
𝑖𝑎𝑧 

, 0) = 𝜋 (Theorem 9.13) 
𝑟→0 𝐶2 

Combining all this together we have, for 𝑎 > 0 

e𝑖𝑎𝑧 ∞ e𝑎𝑖𝑧 ∞ e𝑎𝑖𝜔 

lim ∫ 𝑖𝑧 
𝑑𝑧 = p.v. ∫ i.e. for 𝑎 > 0 2𝜋

1 p.v. ∫ 𝑖𝜔 
𝑑𝜔 = 2

1. 
𝐶1−𝐶2+𝐶3+𝐶𝑅 −∞ 𝑖𝑧 

−𝜋 = 0 
−∞ 

(6) 

Now assume 𝑎 < 0. Using the contour above on the right, we find in exactly the same way 
that 

e𝑖𝑎𝑧 ∞ e𝑎𝑖𝑧 ∞ e𝑎𝑖𝜔 

lim ∫ 𝑖𝑧 
𝑑𝑧 = p.v. ∫ i.e. for 𝑎 < 0 2𝜋 

p.v. ∫ 𝑖𝜔 
𝑑𝜔 = −1

2. 
𝐶4+𝐶5+𝐶6−𝐶𝑅 −∞ 𝑖𝑧 

+𝜋 = 0 
1 

−∞ 

(7) 

Letting 𝑎 = 𝑥 + 1 or 𝑎 = 𝑥 − 1. Equations 6 and 7 prove Equations 4 and 5. We’re done! 
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Problems below here are not assigned. Do them just for fun. 
Problem Fun.1. (No points) 

(a) Let 𝑓(𝑥) = e−𝑥2 . Let 𝜔 > 0 and 𝐼 = ∫
∞ 

𝑓(𝑥)e𝑖2𝜔𝑥 𝑑𝑥. Use the rectangle with 
0 ∞ 

vertices at 0, 𝑅, 𝑅 + 𝑖𝜔 and 𝑖𝜔 and the known integral ∫ e−𝑥2 𝑑𝑥 = 
√𝜋/2 to show that 

0
𝐼 = e−𝜔2√𝜋/2 + 𝑖𝐵. Here 𝐵 is the imaginary part and we are not concerned with its value. 

Solution: Let 𝑔(𝑧) = e−𝑧2 e𝑖2𝑧𝜔. We go through the 4 sides of the rectangle one at a time. 

Re(z)

Im(z)

C1

C2

−C3

−C4

R

iω

(R, iω)

On 𝐶1, 𝑧 = 𝑥, with 𝑥 from 0 to 𝑅. So, 

lim ∫ 𝑔(𝑧) 𝑑𝑧 = ∫
∞ 

e−𝑥2 e𝑖2𝑥𝜔 𝑑𝑥 = 𝐼. 
𝑅→∞ 𝐶1 0 

On 𝐶2, 𝑧 = 𝑅 + 𝑖𝑦, with 𝑦 from 0 to 𝜔; 𝑑𝑧 = 𝑖 𝑑𝑦; 𝑧2 = 𝑅2 − 𝑦2 + 𝑖2𝑅𝑦; 2𝑖𝑧𝜔 = 2𝑖𝑅𝜔 − 2𝑦𝜔. 
So, 

𝜔 𝜔 

∣∫ 𝑔(𝑧) 𝑑𝑧∣ = ∣∫ e−𝑅2 e𝑦2 e−2𝑖𝑅𝑦e2𝑖𝑅𝜔e−2𝑦𝜔 𝑖 𝑑𝑦∣ ≤ e−𝑅2 ∫ e𝑦2 e−2𝑦𝜔 𝑑𝑦. 
𝐶2 0 0 

Clearly this goes to 0 as 𝑅 goes to ∞. 
On 𝐶3, 𝑧 = 𝑥 + 𝑖𝜔, with 𝑥 from 0 to 𝑅; 𝑑𝑧 = 𝑑𝑥; 𝑧2 = 𝑥2 − 𝜔2 + 2𝑖𝑥𝜔; 2𝑖𝑧𝜔 = 2𝑖𝑥𝜔 − 2𝜔2. 
So, 

𝑅 𝑅 

∫ 𝑔(𝑧) 𝑑𝑧 = ∫ e−𝑥2 e𝜔2 e−2𝑖𝑥𝜔e2𝑖𝑥𝜔e−2𝜔2 𝑑𝑥 = e−𝜔2 ∫ e−𝑥2 𝑑𝑥. 
𝐶3 0 0

√𝜋 As 𝑅 → ∞, this integral goes to e−𝜔2 .2 
On 𝐶4, 𝑧 = 𝑖𝑦, with 𝑦 from 0 to 𝜔; 𝑑𝑧 = 𝑖 𝑑𝑦; 𝑧2 = −𝑦2; 2𝑖𝑧𝜔 = −2𝑦𝜔. So, 

∫ 𝑔(𝑧) 𝑑𝑧 = ∫
𝜔 

e−𝑦2 e−2𝑦𝜔 𝑖 𝑑𝑦. 
𝐶4 0 

This is pure imaginary, call it 𝑖𝐵. 

Since 𝑔(𝑧) is entire, we have ∫ 𝑔(𝑧) 𝑑𝑧 = 0. So, using the limits above, we have 
𝐶1+𝐶2−𝐶3−𝐶4 

√𝜋 lim ∫ 𝑔(𝑧) 𝑑𝑧 = 𝐼 − e−𝜔2 

2 
− 𝑖𝐵. 

𝑅→∞ 𝐶1+𝐶2−𝐶3−𝐶4 
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This is what we needed to show! 

̂ 𝑓(𝑥)e−𝑖𝜔𝑥 𝑑𝑥 =(b) Now use part (a) and symmetry to show that the Fourier transform 𝑓(𝜔) = ∫
∞ 

−∞√𝜋e−𝜔2/4. 
Solution: Since, 𝑓(𝑥) = e−𝑥2 is an even function we have 

∞ ∞ ∞ ∞
∫ 𝑓(𝑥)e−𝑖𝜔𝑥 𝑑𝑥 = ∫ 𝑓(𝑥)(e−𝑖𝜔𝑥+e𝑖𝜔𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥)2 cos(𝜔𝑥) 𝑑𝑥 = 2 Re (∫ 𝑓(𝑥)e𝑖𝜔𝑥 𝑑𝑥) 

−∞ 0 0 0 

∞ ∞ 

Part (a) implies ∫ 𝑓(𝑥)e𝑖𝜔𝑥 𝑑𝑥 = ∫ 𝑓(𝑥)e2𝑖(𝜔/2)𝑥 𝑑𝑥 = e−𝜔2/4
√

2
𝜋 +𝑖𝐵. So, we have that 

0 0
the Fourier transform 

∞ ∞
∫ 𝑓(𝑥)e−𝑖𝜔𝑥 𝑑𝑥 = 2 Re (∫ 𝑓(𝑥)e𝑖𝜔𝑥 𝑑𝑥) = e−𝜔2/4√𝜋. QED

−∞ 0 

Problem Fun.2. (No points) 
2𝜋 2𝜋 ⋅ (2𝑛)!Compute ∫ (cos 𝜃)2𝑛 𝑑𝜃. For 𝑛 = 1, 2, …. (Answer: 22𝑛(𝑛!)2 

.)
0 

Solution: Let 
2𝑛 

𝑖𝑧
1 (𝑧 + 1/𝑧 (𝑧2 + 1)2𝑛 

𝑓(𝑧) = 2 
) = 𝑖22𝑛𝑧2𝑛+1 

. 

We know that 

∫
2𝜋

(cos 𝜃)2𝑛 𝑑𝜃 = ∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋 Res(𝑓, 0). 
0 |𝑧|=1 

Expand (𝑧2 + 1)2𝑛 using the binomial theorem: 

= … + 
(2𝑛)!(𝑧2 + 1)2𝑛 

𝑛!𝑛! 𝑧
2𝑛 + … 

1 (2𝑛)!From this it’s clear that Res(𝑓, 0) = ⋅𝑖22𝑛 𝑛!𝑛! . 
2𝜋 ⋅ (2𝑛)!Thus, the integral in question is 22𝑛𝑛!𝑛! , as asserted. 

Problem Fun.3. (No points) 
∞ 𝑥2 

Compute p.v. ∫ (𝑥2 + 1)2 
𝑑𝑥. 

−∞ 
∞ 𝑥2 

Is this the same as the integral ∫ (𝑥2 + 1)2 
𝑑𝑥 without the principal value? 

−∞ 

𝑥2 

Solution: The integrand 𝑓(𝑥) = (𝑥2 + 1)2 
has no singularities on the 𝑥-axis and is asymp-

totic to 1/𝑥2, so the integral converges absolutely. This implies the integral is the same 
with or without the principal value. 
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Let 𝐼 be the integral in question. Since |𝑓(𝑧)| decays like 1/|𝑧|2, we can use a semicircular 
contour. 

Re(z)

Im(z)

R−R

CR

C1

i

The residue theorem implies ∫ 𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖 ∑ residues of 𝑓 inside the contour. We 
𝐶1+𝐶𝑅 

examine each of the pieces in this equation. 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = 0. (Theorem 9.1 in the Topic 9 notes.) 
𝑅→∞ 𝐶𝑅 

lim ∫ 𝑓(𝑧) 𝑑𝑧 = 𝐼. (This is clear.) 
𝑅→∞ 𝐶1 

The only pole of 𝑓 inside the contour is at 𝑧 = 𝑖. This is a pole of order 2. Letting 

𝑔(𝑧) = (𝑧 − 𝑖)2𝑓(𝑧) = 
𝑧2 

4..(𝑧 + 𝑖)2 
, we have Res(𝑓, 𝑖) = 𝑔′(𝑖) = − 𝑖 

𝜋 Thus, 𝐼 = 2 
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