18.04 Problem Set 8, Spring 2018 Solutions

Problem 1. (15 points)
Let $z=x+i y$. Describe the image of each of the following regions under the mapping $w=\mathrm{e}^{z}$.
(a) The strip $0<y<\pi$.

Solution: For this entire problem let's write $\mathrm{e}^{z}=r \mathrm{e}^{i \theta}$. Since $\mathrm{e}^{z}=\mathrm{e}^{x} \mathrm{e}^{i y}$, we have

$$
r=\mathrm{e}^{x}, \quad \theta=y
$$

In the strip, e^{x} takes all values >0. So, the image is every point with $0<\theta<\pi$, i.e. the upper half-plane.
(b) The slanted strip between the lines $y=x$ and $y=x+2 \pi$.

Solution: Both the boundary lines $y=x$ and $y=x+2 \pi$ map to the exponential spiral shown. Each of the two vertical segments on the left are of length 2π. So e^{z} maps this segment to a full circle minus the point $\mathrm{e}^{x+i x}=\mathrm{e}^{x+i(x+2 \pi)}$. In this way, the slanted strip is mapped to the entire plane minus the spiral and minus the origin.

(c) The half-strip $x>0,0<y<\pi$.

Since $r=\mathrm{e}^{x}>1$, the image is outside the unit circle. Since $0<\theta=y<\pi$, the image is in the upper half plane.
Answer: The part of the upper half-plane outside the unit circle.

(d) The rectangle $1<x<2,0<y<\pi$.

Solution: As before, since $0<\theta=y<\pi$, the image is in the upper half-plane. The left and right edges of the rectangle map to the semicircles of radius e^{1} and e^{2} respectively. The top and bottom edges map to segments along the real axis

Answer: The image is the half annulus shown.

(e) The right half-plane $x>0$.

Solution: Since $r=\mathrm{e}^{x}>0$ this maps to the exterior of the unit circle.

Problem 2. (18 points)
(a) Find a fractional linear transformation that maps the right half-plane to the unit disk such that the origin is mapped to -1.
Solution: $T(z)=\frac{z-1}{z+1}$. To verify this works we need to check three things.

1. $T(0)=-1$. This is obvious.
2. T maps the boundary of the right half-plane (y-axis) to the boundary of the unit disk (unit circle).
3. T maps the right half-plane to the inside of the disk.

To see (2): Take $i y$ on the boundary of the half-plane. Then, $|T(i y)|=\frac{|i y-1|}{|i y+1|}=$ $\frac{\sqrt{1+y^{2}}}{\sqrt{1+y^{2}}}=1$. This shows $T(i y)$ is on the unit circle. Since we know fractional linear transformations map lines to lines or circles this shows the image of the y-axis must be the entire unit circle.

To see (3): (1) shows that one point in the right half-plane maps to the inside of the disk. This implies the entire half-plane must do so also.
(b) A fixed point z of a transformation T is one where $T(z)=z$. Let T be a fractional linear transformation. Assume T is not the identity map. Show T has a most two fixed
points.
Let $T(z)=\frac{a z+b}{c z+d}$. To find fixed points we solve the equation $T(z)=z$. A little algebra puts the equation in the form

$$
\frac{a z+b}{c z+d}=z \Leftrightarrow c z^{2}+(d-a) z-b=0
$$

There are a number of cases to consider. In all of them the number of fixed points is at most two.

If $c \neq 0$ then the quadratic equation has at most two solutions. (It might have only one if it has a repeated root.)
If $c=0$ then the equation is linear and there is at most one solution. (There may be none.)
(c) Let S be a circle and z_{1} a point not on the circle. Show that there is exactly one point z_{2} such that z_{1} and z_{2} are symmetric with respect to S.
(Hint: start by proving this for S a line.)
This is in the topic 10 notes in section 10.3.2:
Let T be a fractional linear transformation that maps S to a line. We know that $w_{1}=T\left(z_{1}\right)$ has a unique reflection w_{2} in this line. Since T^{-1} preserves symmetry, z_{1} and $z_{2}=T^{-1}\left(w_{2}\right)$ are symmetric in S. Since w_{2} is the unique point symmetric to w_{1} the same is true for z_{2} vis-a-vis z_{1}.

Problem 3. (20 points)

Suppose you want to find a function u harmonic on the right half-plane that takes the values $u(0, y)=y /\left(1+y^{2}\right)$ on the imaginary axis. The first obvious guess is $u(z)=\operatorname{Im}\left(z /\left(1-z^{2}\right)\right.$. But this fails because $z /\left(1-z^{2}\right)$ has a singularity at $z=1$. Find a valid u using the following steps.

So, forget about this guess and go back to only knowing that u is harmonic and $u(0, y)=$ $y /\left(1+y^{2}\right)$.
(a) Show that rotation by α is a fractional linear transformation which corresponds to the $\operatorname{matrix}\left(\begin{array}{cc}\mathrm{e}^{i \alpha / 2} & 0 \\ 0 & \mathrm{e}^{-i \alpha / 2}\end{array}\right)$.
(This is not hard, it's just here in case you need it in part (b).)
Solution: $T(z)=\frac{\mathrm{e}^{i \alpha / 2} z}{\mathrm{e}^{-i \alpha / 2}}=\mathrm{e}^{i \alpha} z$. This is indeed rotation by α.
(b) Find a fractional linear transformation that maps the right half-plane to the unit disk, so that u is transformed to a function ϕ with $\phi\left(\mathrm{e}^{i \theta}\right)=\sin (\theta) / 2$.
Hint: make sure 1 is mapped to 0. If your transformation still doesn't transform u to the correct ϕ try composing with a rotation.

Solution: Conveniently, the map found in problem 2a will work. Write $w=T(z)$, so z is the variable on the half-plane and w is the variable on the disk. We have the following ways of describing the ϕ.

$$
u(z)=\phi \circ T(z) \quad \text { or } \quad \phi(w)=u \circ T^{-1}(w) .
$$

We have $T^{-1}(w)=\frac{w+1}{-w+1}$. We know that T^{-1} maps unit circle $\mathrm{e}^{i \theta}$ to the imaginary axis $i y$. (Don't lose track of i multiplying the y !) so we have

$$
i y=T^{-1}\left(\mathrm{e}^{i \theta}\right)=\frac{\mathrm{e}^{i \theta}+1}{-\mathrm{e}^{i \theta}+1} \quad \text { equivalently } \quad y=\frac{1}{i} \cdot \frac{1+\mathrm{e}^{i \theta}}{1-\mathrm{e}^{i \theta}}
$$

Now we can compute

$$
\begin{aligned}
\phi\left(\mathrm{e}^{i \theta}\right) & =u(0, y)=\frac{y}{1+y^{2}}=\frac{\frac{1}{i}\left(\frac{1+\mathrm{e}^{i \theta}}{1-\mathrm{e}^{i \theta}}\right)}{1-\left(\frac{1+\mathrm{e}^{i \theta}}{1-\mathrm{e}^{i \theta}}\right)^{2}}=\frac{1}{i} \cdot \frac{\left(1+\mathrm{e}^{i \theta}\right)\left(1-\mathrm{e}^{i \theta}\right)}{\left(1-\mathrm{e}^{i \theta}\right)^{2}-\left(1+\mathrm{e}^{i \theta}\right)^{2}} \\
& =\frac{1}{i}\left(\frac{1-\mathrm{e}^{i 2 \theta}}{-4 \mathrm{e}^{i \theta}}\right)=\frac{\mathrm{e}^{-i \theta}-\mathrm{e}^{i \theta}}{-4 i}=\frac{1}{2} \cdot \frac{\mathrm{e}^{i \theta}-\mathrm{e}^{-i \theta}}{2 i}=\frac{1}{2} \sin (\theta) .
\end{aligned}
$$

This is exactly what was asserted in the problem.
(c) Show that $\phi(w)=\frac{1}{2} \operatorname{Im}(w)$.

Solution: The point is that we are looking for a function $\phi(w)$ which is

1. a harmonic function on the disk
2. has boundary value $\phi\left(\mathrm{e}^{i \theta}\right)=\sin (\theta) / 2$. That is, if $w=\mathrm{e}^{i \theta}$ then we need to have $\phi(w)=\sin (\theta) / 2$.

The function $\Phi(w)=w$ is analytic, so $\phi(w)=\frac{1}{2} \operatorname{Im}(w)$ is harmonic. On the boundary of the disk we have

$$
\phi\left(\mathrm{e}^{i \theta}\right)=\frac{1}{2} \operatorname{Im}\left(\mathrm{e}^{i \theta}\right)=\frac{1}{2} \sin (\theta) .
$$

This is exactly what is required by requirement (2) above.
(d) Use the fractional linear transform to take ϕ back to u on the right half-plane.

Solution: The relationship $u(z)=\phi(T(z))$ gives

$$
u(z)=\phi\left(\frac{z-1}{z+1}\right)=\frac{1}{2} \operatorname{Im}\left(\frac{z-1}{z+1}\right) .
$$

So, using $z=x+i y$

$$
u(x, y)=\frac{1}{2} \operatorname{Im}\left(\frac{(x-1)+i y}{(x+1)+i y}\right)=\frac{y}{(x+1)^{2}+y^{2}} .
$$

Problem 4. (12 points)
(a) Show that the mapping $w=z+1 / z$ maps the circle $|z|=a(a \neq 1)$ to the ellipse

$$
\frac{u^{2}}{(a+1 / a)^{2}}+\frac{v^{2}}{(a-1 / a)^{2}}=1 .
$$

Solution: We'll use the notation $w=u+i v$. We'll write points on the circle $|z|=a$ as $a e^{i \theta}$. So,

$$
\begin{aligned}
w & =z+\frac{1}{z}=a \mathrm{e}^{i \theta}+\frac{1}{a \mathrm{e}^{i \theta}} \\
& =(a \cos (\theta)+i a \sin (\theta))+\frac{\cos (\theta)-i \sin (\theta)}{a} \\
& =\left(a+\frac{1}{a}\right) \cos (\theta)+i\left(a-\frac{1}{a}\right) \sin (\theta) .
\end{aligned}
$$

This shows $u=\left(a+\frac{1}{a}\right) \cos (\theta)$ and $\left(a-\frac{1}{a}\right) \sin (\theta)$. Now it is clear that

$$
\frac{u^{2}}{(a+1 / a)^{2}}+\frac{v^{2}}{(a-1 / a)^{2}}=\cos ^{2}(\theta)+\sin ^{2}(\theta)=1 . \quad \text { QED }
$$

(b) Where does it map the circle $|z|=1$?
(This problem will be helful when we look at Joukowsky transformations.)
Solution: If $z=\mathrm{e}^{i \theta}$ then the computation above shows that

$$
w=z+1 / z=2 \cos (\theta) .
$$

That is, w is real. So the unit circle is mapped to the line segment $-2 \leq x \leq 2$. (As z goes once around the circle, w covers the segment twice.)

Problem 5. (24 points)
(a) Find a harmonic function u on the upper half-plane that has the following boundary values.

$$
u(x, 0)= \begin{cases}1 & \text { for } x<-1 \\ 0 & \text { for }-1<x<1 \\ 1 & \text { for } 1<x\end{cases}
$$

Solution: $u(z)=1-\frac{1}{\pi} \theta_{2}+\frac{1}{\pi} \theta_{1}=1-\frac{1}{\pi} \arg (z-1)+\frac{1}{\pi} \arg (z+1)$.

Here $\theta_{1}=\arg (z+1), \theta_{2}=\arg (z-1)$, with θ_{1} and θ_{2} between $-\pi / 2$ and $3 \pi / 2$. (We can choose any convenient branch cut that makes the argument analytic in the upper half-plane.)
(b) Find a harmonic function, $u(x, y)$, on the unit disk that boundary values indicated in the figure.

That is, $u\left(\mathrm{e}^{i \theta}\right)= \begin{cases}1 & \text { for }-\pi<\theta<\pi / 4 \\ 0 & \text { for }-\pi / 4<\theta<\pi / 4 \\ 1 & \text { for } \pi / 4<\theta<\pi\end{cases}$
Solution: Our strategy is to map the disk the the upper half-plane, solve the problem there and then translate back to the disk.
Method 1. Given our solution in part (a) we can find a fractional linear transformation T from the half-plane to the disk with

$$
T(\infty)=-1, \quad T(-1)=\mathrm{e}^{-i \pi / 4}, \quad T(1)=\mathrm{e}^{i \pi / 4} .
$$

With this map, our solution in part (a) on the half-plane would exactly correspond to the solution we seek. Finding such a T is straightforward. We start with $T(w)=\frac{-w+a}{w+b}$. This is chosen so that $T(\infty)=-1$. Plugging in $w= \pm 1$ we get the equations

$$
\begin{aligned}
T(-1) & =\frac{1+a}{-1+b}=\mathrm{e}^{-i \pi / 4}=\frac{1}{\sqrt{2}}-i \frac{1}{\sqrt{2}} \\
T(1) & =\frac{-1+a}{1+b}=\mathrm{e}^{i \pi / 4}=\frac{1}{\sqrt{2}}+i \frac{1}{\sqrt{2}} .
\end{aligned}
$$

These are easy to solve for

$$
a=\frac{1}{\sqrt{2}}+i \frac{(1+\sqrt{2})}{\sqrt{2}}, \quad \text { and } \quad b=i(1+\sqrt{2})
$$

In any case, we will just use them as a and b.
Let's call our solution in part (a) $u_{H}(w)$. So

$$
u_{H}(w)=1-\frac{1}{\pi} \theta_{2}+\frac{1}{\pi} \theta_{1}=\operatorname{Re}\left(1-\frac{1}{\pi i} \log (w-1)+\frac{1}{\pi i} \log (w+1)\right) .
$$

The connection between u_{H} and the u we seek is $u(z)=u_{H} \circ T^{-1}(z)$. It's easy to compute that $w=T^{-1}(z)=\frac{b z-a}{-z+1}$, so

$$
u(z)=\operatorname{Re}\left(1-\frac{1}{\pi i} \log \left(\frac{b z-a}{-z+1}-1\right)+\frac{1}{\pi i} \log \left(\frac{b z-a}{-z+1}+1\right)\right)
$$

Method 2. Here we just use our standard transform from the upper half-plane to the disk: $T(w)=\frac{z-i}{z+i}$. Let $w_{1}=T^{-1}\left(\mathrm{e}^{i \pi / 4}\right), w_{2}=T^{-1}\left(\mathrm{e}^{-i \pi / 4}\right)$. Then we can transform the problem to the half-plane with jumps in the boundary value at w_{1} and w_{2}. Solve this in the same manner as part (a) and transfer the solution back to the disk. We leave the calculations to you!
(c) Find a harmonic function, $u(x, y)$, on the infinite wedge with angle $\pi / 4$ shown. Such that u has the boundary values indicated in the figure.

Solution: Call the wedge W and call the variable on the wedge w. The map $z=f(w)=w^{4}$ maps W to the upper half-plane, with $f\left(\mathrm{e}^{i \pi / 4}\right)=-1$ and $f(1)=1$.
So the boundary value problem in this part is transformed to exactly the problem in part (a). If we call the solution in part (a) $u_{H}(z)$, then the solution we seek is

$$
u(w)=u_{H} \circ f(w)=u_{H}\left(w^{4}\right)=1-\frac{1}{\pi} \arg \left(w^{4}-1\right)+\frac{1}{\pi} \arg \left(w^{4}+1\right) .
$$

MIT OpenCourseWare
https://ocw.mit.edu

18.04 Complex Variables with Applications

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

