
18.04 Problem Set 9, Spring 2018 Solutions 

Problem 1. (20 points) 
(a) Start with a uniform flow and add a vortex at the point 2i. Give the complex potential 
for this flow. From that compute the stream function and sketch some streamlines. You can 
do this by hand or with a package like Matlab or Mathematica. 
Solution: Here is the plot of some streamlines with a few velocity vectors added to show 
the direction. The orange dot on the negative 𝑦-axis is the stagnation point. 

Uniform flow with a vortex at 0. Here, 𝑈 = 1, 𝑄 = 1. 
Uniform flow has complex potential Φ𝑈(𝑧) = 𝑈𝑧, where 𝑈 is the direction. 
A vortex at 𝑧 = 2𝑖 has complex potential Φ𝑉 (𝑧) = 𝑖𝑄 log(𝑧 − 2𝑖), where 𝑄 is a measure of 
the circulation strength. 
To avoid a lot of complicated arithmetic, let’s set 𝑈 = 1. So, the combined flow has complex 
potential Φ(𝑧) = 𝑧 + 𝑖𝑄 log(𝑧). 
Let 𝑧 = 𝑥 + 𝑖𝑦 = 𝑟e𝑖𝜃, then 

Φ(𝑧) = (𝑥+𝑖𝑦)+𝑖𝑄(log(|𝑧 −2𝑖|)+𝑖 arg(𝑧 −2𝑖)) = (𝑥−𝑄 arg(𝑧 −2𝑖))+𝑖(𝑦 +𝑄 log(|𝑧 −2𝑖|)). 

So, the stream function is 𝜓 = Im(Φ) = 𝑦 + 𝑄 log(|𝑧 − 2𝑖|) . 

To plot some velocity vectors we used the fact the Φ′ = 𝑢 − 𝑖𝑣, where (𝑢, 𝑣) is the velocity 
vector field. In this case, 

𝑖𝑄 
𝑧 − 2𝑖 = 1 + 

𝑄(𝑦 − 2) + 𝑖𝑄𝑥 Φ′(𝑧) = 1 + . (1)|𝑧 − 2𝑖|2 

So, (𝑢, 𝑣) = (1 + 
𝑄(𝑦 − 2) 𝑄𝑥 Checking the velocity at 𝑧 = 1 + 2𝑖 we see the|𝑧 − 2𝑖|2 

, −(|𝑧 − 2𝑖|2 ). 
arrow points downward, so the circulation is clockwise around 𝑧 = 2𝑖. 
Stagnation points are where Φ′(𝑧) = 0. In this case this there is only one stagnation point 
at 𝑧 = −𝑄𝑖 + 2𝑖. This shows that the stronger the circulation the farther out it pushes the 
stagnation point. 
(b) Start with the same flow as part (a). Use the Milne-Thomson Theorem to make this 
flow go around the cylinder |𝑧| = 1. Give the complex potential, the stream function and 
sketch some streamlines. 
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Solution: Below on the right is the flow asked for: uniform + vortex around a cylinder. As 
a bonus, on the left, we show uniform around a cylinder. Stagnation points are shown as 
orange dots. The cylinder is shown as an orange circle. We include the streamlines inside 
the cylinder because they look nice! 
In the figures 𝑈 = 1, 𝑄 = 1, 𝑉 = 2𝑖 and 𝑅 = 1. 

Left: uniform flow around a cylinder. Right: uniform plus vortex around a cylinder. 
As before, uniform flow has Φ𝑈 = 𝑈𝑧. A vortex around 𝑧 = 2𝑖 has Φ𝑉 (𝑧) = 𝑖𝑄 log(𝑧 − 2𝑖). 
So uniform plus vortex has complex potential 

Φ𝑈𝑉 (𝑧) = 𝑈𝑧 + 𝑖𝑄 log(𝑧 − 2𝑖). 

The Milne-Thomson circle theorem implies that this flow around a cylinder of radius 𝑅 has 
complex potential 

Φ(𝑧) = Φ𝑈𝑉 (𝑧) + Φ𝑈𝑉 (𝑅2/𝑧) = 𝑈𝑧 + 
𝑈𝑅 

𝑧 

2 

+ 𝑖𝑄 log(𝑧 − 2𝑖) − 𝑖𝑄 log(𝑅2/𝑧 + 2𝑖). 

The effect of 𝑈 is just to scale and rotate the flow. Setting 𝑈 = 1 makes the arithmetic a 
little simpler and doesn’t affect the basic analysis, so let’s do that. We have 

Φ(𝑧) = 𝑧 + 
𝑅
𝑧

2 

+ 𝑖𝑄 log(𝑧 − 2𝑖) − 𝑖𝑄 log(𝑅2/𝑧 + 2𝑖). 

So, for 𝑧 = 𝑥 + 𝑖𝑦, the stream function is 

𝜓 = Im(Φ) = (𝑦 − 
𝑅
𝑟
2

2
𝑦 + 𝑄 log(|𝑧 − 2𝑖|) − 𝑄 log(|𝑅2/𝑧 + 2𝑖|)) . 

Again we used Φ′ to draw some arrows for the velocity field and find stagnation points. 

𝑖𝑄 𝑖𝑄𝑅2
Φ′(𝑧) = 1 − 

𝑅2 

(2)𝑧2 
+ 𝑧 − 2𝑖 + 𝑧(𝑅2 + 2𝑖𝑧) . 

Stagnation points are where Φ′(𝑧) = 0. Since we end up with a fourth order polynomial, 
we used Octave’s roots function to find the roots. 
(c) Explain why the flows in both parts (a) and (b) look like uniform flow far from the 
origin. 
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Solution: In general, the velocity field (𝑢, 𝑣) is related to Φ′(𝑧) by Φ′ = 𝑢 − 𝑖𝑣. 
In part (a) Φ′(𝑧) = 1 + 𝑖𝑄/(𝑧 − 2𝑖). As 𝑧 goes to infinity Φ′(𝑧) ≈ 1. This shows the vector 
field is approximately uniform for large 𝑧. 
Part (b) is the same: The expression in Equation 2 for Φ′(𝑧) is approximately 1 for large 
𝑧. 

Problem 2. (15 points) 
Consider 𝑓(𝑧) = 𝑧5 − 2𝑧. 
(a) How many times does 𝑓 wind the circle |𝑧| = 3 around the origin? That is, let 𝛾(𝜃) 
parametrize the circle. How many times does the curve 𝑓 ∘ 𝛾(𝜃) wind around the origin. 
Solution: 
The figure on the left below show the plot of 𝑓 ∘ 𝛾, where 𝛾 is the circle |𝑧| = 3. 

Left plot: parts (a) and (c). Right plot: part (b). 
We will use the argument principle and Rouchés theorem to show that the winding number 
of 𝑓 ∘ 𝛾 around 0 is Ind(𝑓 ∘ 𝛾, 0) = 5 . 

Using the notation from the class notes, the argument principle says that Ind(𝑓 ∘ 𝛾, 0) = 
𝑍𝑓,𝛾 − 𝑃𝑓,𝛾. Since 𝑓 is entire there are no poles and we have 

Ind(𝑓 ∘ 𝛾, 0) = 𝑍𝑓,𝛾 

So, to show the winding number is 5, it suffices to show that 𝑓 has exactly 5 zeros inside 𝛾. 
For this, we split 𝑓 into pieces: 𝑓 = 𝑔 + 𝑧, where 𝑔(𝑧) = 𝑧5 and ℎ(𝑧) = −2𝑧. On |𝑧| = 3 we 
have 

|ℎ| = 6 < 35 = |𝑔|. 
So Rouchés theorem implies that 𝑍𝑔,𝛾 = 𝑍𝑔+ℎ,𝛾. Clearly 𝑍𝑔,𝛾 = 5 This shows that 𝑓 = 𝑔+ℎ 
has 5 zeros inside 𝛾. QED. 
(b) How many times does 𝑓 wind the circle |𝑧| = 1 around the origin? 

Solution: The figure on the right above shows 𝑓 ∘ 𝛾 where 𝛾 is the unit circle. The style of 
argument is identical to part (a). 
Let 𝑓 = 𝑔 + ℎ, where 𝑔(𝑧) = −2𝑧 and ℎ = 𝑧5. On |𝑧| = 1, |ℎ| = 1 < 2 = |𝑔|. It is clear that 
𝑔 has exactly one zero inside 𝛾. So, Rouchés theorem implies 𝑍𝑓,𝛾 = 𝑍𝑔,𝛾 = 1. That is, the 
winding number is 1. 
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(c) How many times does 𝑓 wind the circle |𝑧| = 3 around the point 𝑧 = −2? 

Solution: Let 𝛾 be the circle of radius 3 around the origin. Clearly, Ind(𝑓 ∘ 𝛾, −2) = 
Ind(−2 + 𝑓 ∘ 𝛾, 0). Now we apply Rouchés theorem to show that 𝑓(𝑧) − 2 has 5 zeros inside 

𝛾. This will imply that Ind(𝑓 ∘ 𝛾, −2) = 5. 
Let 𝑔(𝑧) = 𝑧5. |𝑔| = 35 on 𝛾. Also 𝑔 has 5 zeros inside 𝛾. 
Let ℎ(𝑧) = −2𝑧 − 2. |ℎ| ≤ 8 on 𝛾. 
Since |ℎ| < |𝑔| on 𝛾, Rouchés theorem says that 𝑓 −2 = 𝑔 +ℎ and 𝑔 both have 5 zeros inside 
𝛾. 

Problem 3. (10 points) 
(a) Show that 𝑓(𝑧) = 𝑧3 + 9𝑧 + 30 has no roots in the disk |𝑧| < 2. 
We apply Rouchés theorem: let 𝑔(𝑧) = 9𝑧 + 30 and ℎ(𝑧) = 𝑧3. Both 𝑔 and ℎ are analytic 
and 𝑓 = 𝑔 + ℎ. 
On the curve 𝐶 ∶ |𝑧| = 2 we have |𝑔| ≥ |12| and |ℎ| = 8, i.e. |ℎ| < |𝑔|. Since |ℎ| is strictly 
less than |𝑔| on 𝐶, Rouchés theorem implies that 𝑔 and 𝑓 = 𝑔 + ℎ have the same number of 
zeros inside 𝐶. Since 𝑔(𝑧) clearly has no zeros inside the circle, neither does 𝑓 . 
(b) Show that 𝑓(𝑧) = 𝑧6 + 4𝑧2 − 1 has exactly two roots in the disk |𝑧| < 1. 
Let 𝑔(𝑧) = 4𝑧2 − 1 and ℎ(𝑧) = 𝑧6. On the unit circle we have 

|ℎ(𝑧)| = 1 < 3 ≤ |𝑔(𝑧)|. 

So, since 𝑔 and ℎ have no poles, Rouchés theorem says 𝑔 and 𝑓 = 𝑔 + ℎ have the same 
number of zeros inside the unit circle. The roots of 𝑔(𝑧) are ±1/2, i.e. 𝑔 has exactly two 
zeros in the disk, therefore, so does 𝑓 . 

Problem 4. (7 points) 
Suppose 𝑓(𝑧) is analytic on a region containing |𝑧| ≤ 1. Suppose also that |𝑓(𝑧)| < 1 on
|𝑧| = 1. Show that 𝑓(𝑧) − 𝑧 has exactly one zero in the disk |𝑧| < 1 

Solution: We know that 𝑔(𝑧) = −𝑧 has exactly one zero in the unit disk. Since |𝑓| < 1 = |𝑔| 
on the unit circle, we can apply Rouchés theorem to show that 

QED.1 = 𝑍𝑔,|𝑧|=1 = 𝑍𝑓+𝑔,|𝑧|=1 = 𝑍𝑓−𝑧,|𝑧=1 

Problem 5. (15 points) 
In this problem we will consider linear systems with negative feedback, where the feedback 
gain is 𝑘. That is, if 𝐺(𝑠) is the open loop system function then the closed loop system

𝐺(𝑠)function is 𝐺𝐶𝐿(𝑠) = 1 + 𝑘𝐺(𝑠) . 

𝑠 + 1 (a) Suppose a linear system has system function 𝐺(𝑠) = Let the feedback (𝑠 − 1)(𝑠 − 2) . 
gain 𝑘 = 4. Is the closed loop system stable? Do this analytically. 
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Solution: We have 

𝑠+1𝐺 (𝑠−1)(𝑠−2) 𝑠 + 1 = 𝑘(𝑠+1)𝐺𝐶𝐿 = 1 + 𝑘𝐺 
= 

1 + (𝑠 − 1)(𝑠 − 2) + 𝑘(𝑠 + 1). 
(𝑠−1)(𝑠−2) 

𝑠 + 1 For 𝑘 = 4 this becomes 𝐺𝐶𝐿(𝑠) = It’s easy to compute that 𝐺𝐶𝐿 has poles 𝑠2 + 𝑠 + 6 . 
−1 ± 

√
−23 . Since these are in the left half-plane, 𝐺𝐶𝐿 is stable. 2 

(b) For the system in part (a) draw the Nyquist plot, that is draw the curve 𝑘𝐺∘𝛾 where the 
curve 𝛾 is the 𝑦-axis. You can use any tool you want to do this. One suggestion is to use the 
following applet: https://web.mit.edu/jorloff/www/jmoapplets/nyquist/nyquistCrit.html. 
(Use this version of the applet. I’ve modified the one we used in class to include feedback 
gain.) 

How many times does this curve wind around −1? Explain how this is consistent with your 
answer to part (a). 
Solution: The plot below shows the winding number of 4𝐺 ∘ 𝛾 around −1 is 2. This is 
consistent with part (a) because: 
1. 𝐺(𝑠) has two poles in the right half-plane. 
2. the Nyquist criterion for stability says that if 𝐺𝐶𝐿 is stable then the winding number of 
the Nyquist plot around -1 equals the number of poles in the right half-plane. 

Problem 6. (16 points) 
Let 𝑓(𝑧) = (𝑧 + 1/𝑧)/2. Use a package like Matlab or Mathematic to draw 𝑓 ∘ 𝛾 for the 
following curves. 
Make sure that the axes both have the same scale, so that circles plot as circles and not 
ellipses. In Matlab the command axis equal after you plot will do this. 
(a) The circle |𝑧| = 3/2. 
(b) The circle |𝑧 + 1/2| = 3/2. 
(c) The circle |e𝑖𝜋/4𝑧 + 1/2| = 3/2. 
(d) The unit circle |𝑧| = 1. 

https://web.mit.edu/jorloff/www/jmoapplets/nyquist/nyquistCrit.html
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answers: We used the following Matlab (really Octave) code to do all the plots in this 
problem. For each plot all we had to do is change the values of a and b. 
% Set the constants describing the circle 

a = 1.5; 
b = -0.5; 

% Set theta from 0 to 2pi 

th = [0:.01:2*pi]; 

% z is the circle being transformed 
z = a*e.^(1i*th) + b; 

% w is the transformed circle 
w = 0.5*(z+1./z); 

% Draw the plots 
hold off % This causes plot to erase the previous figure 

% Subplot can be used to put more than one graph in a figure. The command below 
sets the figure to hold a 1 by 2 array of graphs. The third argument sets the 
current graph to draw in. 

subplot(1,2,1) 
plot(real(z),imag(z)) % Plot the circle 

axis equal % Set the scales on each axis to be the same. 

hold on % This allows us to overlay more plots on the current one. 

% The follow bits of plotting draw axes through the origin. There are other, 
probably better, ways to do this. 

plot(xlim(),[0,0],'k') 
plot([0,0],ylim(),'k') 

subplot(1,2,2) % Set the plot to draw in the second graph 

plot(real(w),imag(w)) % Plot the transformed circle 

axis equal 
hold on 
plot(xlim(),[0,0],'k') 
plot([0,0],ylim(),'k') 
hold off 

(a) Here 𝑎 = 3/2, 𝑏 = 0. The image is an ellipse 



7 18.04 Problem Set 9, Spring 2018 Solutions 

(b) If 𝑣 = 𝑧 + 1/2 then |𝑣| = |𝑧 + 1/2| = 3/2. So, 𝑣 = 2
3 e𝑖𝜃, with 0 ≤ 𝜃 ≤ 2𝜋. 

3Solving for 𝑧: 𝑧 = 𝑣 − 1/2 = 2e𝑖𝜃 − 2
1 . So 𝑎 = 3/2 and 𝑏 = −1/2 

(c) This is similar to part (b). 

2 = 3 
2)𝑣 = e𝑖𝜋/4𝑧 + 

1 
2e𝑖𝜃, so, 𝑧 = e−𝑖𝜋/4 (2

3 e𝑖𝜃 − 
1 

That is, 𝑎 = e−1𝑖∗𝜋/4 ∗ 1.5 and 𝑏 = e−1𝑖∗𝜋/4 ∗ (−0.5) 

Notice how this looks like an airfoil. We could use a more complicated shaping functions to 
map the circle to other shapes. This map would map a flow around the cylinder to a flow 
around the new shape. For example, this could be used to study flow around a wing. 
(d) Here 𝑎 = 1 and 𝑏 = 0. The result is a line segment on the real axis between -1 and 1. 
It’s easy to see why this happens: on the unit circle 𝑧 = e𝑖𝜃, so 

𝑧 + 1/𝑧 = 
e𝑖𝜃 + e−𝑖𝜃 

= cos(𝜃). 2 2 

This is real and stays between -1 and 1. 
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