
Conditional Probability, Independence and Bayes’ Theorem 
Class 3, 18.05 

Jeremy Orloff and Jonathan Bloom 

1 Learning Goals 

1. Know the definitions of conditional probability and independence of events. 

2. Be able to compute conditional probability directly from the definition. 

3. Be able to use the multiplication rule to compute the total probability of an event. 

4. Be able to check if two events are independent. 

5. Be able to use Bayes’ formula to ‘invert’ conditional probabilities. 

6. Be able to organize the computation of conditional probabilities using trees and tables. 

7. Understand the base rate fallacy thoroughly. 

2 Conditional Probability 

Conditional probability answers the question ‘how does the probability of an event change 
if we have extra information’. We’ll illustrate with an example. 
Example 1. Toss a fair coin 3 times. 
(a) What is the probability of 3 heads? 

Solution: Sample space Ω = {𝐻𝐻𝐻, 𝐻𝐻𝑇 , 𝐻𝑇 𝐻, 𝐻𝑇 𝑇 , 𝑇 𝐻𝐻, 𝑇 𝐻𝑇 , 𝑇 𝑇 𝐻, 𝑇 𝑇 𝑇 }. 
All outcomes are equally probable, so 𝑃 (3 heads) = 1/8. 

(b) Suppose we are told that the first toss was heads. Given this information how should 
we compute the probability of 3 heads? 

Solution: We have a new (reduced) sample space: Ω′ = {𝐻𝐻𝐻, 𝐻𝐻𝑇 , 𝐻𝑇 𝐻, 𝐻𝑇 𝑇 }. 
All outcomes are equally probable, so 

𝑃 (3 heads given that the first toss is heads) = 1/4. 
This is called conditional probability, since it takes into account additional conditions. To 
develop the notation, we rephrase (b) in terms of events. 
Rephrased (b) Let 𝐴 be the event ‘all three tosses are heads’ = {𝐻𝐻𝐻}. 
Let 𝐵 be the event ‘the first toss is heads’ = {𝐻𝐻𝐻, 𝐻𝐻𝑇 , 𝐻𝑇 𝐻, 𝐻𝑇 𝑇 }. 
The conditional probability of 𝐴 knowing that 𝐵 occurred is written 

𝑃 (𝐴|𝐵) 

This is read as 
‘the conditional probability of 𝐴 given 𝐵’ 

1 
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or 
‘the probability of 𝐴 conditioned on 𝐵’ 

or simply 
‘the probability of 𝐴 given 𝐵’. 

We can visualize conditional probability as follows. Think of 𝑃 (𝐴) as the proportion of the 
area of the whole sample space taken up by 𝐴. For 𝑃 (𝐴|𝐵) we restrict our attention to 𝐵. 
That is, 𝑃 (𝐴|𝐵) is the proportion of area of 𝐵 taken up by 𝐴, i.e. 𝑃 (𝐴 ∩ 𝐵)/𝑃 (𝐵). 

𝐵
𝐴

𝐴 ∩ 𝐵

𝐻𝑇 𝐻 𝐻𝑇 𝑇 𝑇 𝑇 𝐻 𝑇 𝑇 𝑇

𝐻𝐻𝐻 𝐻𝐻𝑇 𝑇 𝐻𝐻 𝑇 𝐻𝑇

𝐴 = 𝐴 ∩ 𝐵 𝐵

Conditional probability: Abstract visualization and coin example 

Note, 𝐴 ⊂ 𝐵 in the right-hand figure, so there are only two colors shown. 
The formal definition of conditional probability catches the gist of the above example and 
visualization. 
Formal definition of conditional probability 
Let 𝐴 and 𝐵 be events. We define the conditional probability of 𝐴 given 𝐵 as 

𝑃(𝐴 ∩ 𝐵) 𝑃 (𝐴|𝐵) = , provided 𝑃(𝐵) ≠ 0. (1)𝑃 (𝐵) 

Let’s redo the coin tossing example using the definition in Equation (1). Recall 𝐴 = ‘3 heads’ 
and 𝐵 = ‘first toss is heads’. We have 𝑃 (𝐴) = 1/8 and 𝑃 (𝐵) = 1/2. Since 𝐴 ∩ 𝐵 = 𝐴, we 
also have 𝑃(𝐴 ∩ 𝐵) = 1/8. Now according to (1), 

𝑃 (𝐴 ∩ 𝐵) 1/8𝑃 (𝐴|𝐵) = = 1/2 
= 1/4,𝑃 (𝐵) 

which agrees with our answer in Example 1 b. 

We start with a simple example where we can find all the probabilities directly by counting. 
Example 2. Draw two cards from a deck. Define the events: 𝑆1 = ‘first card is a spade’ 
and 𝑆2 = ‘second card is a spade’. What is the 𝑃 (𝑆2|𝑆1)? 

Solution: We’ll use formula (1) to compute the conditional probability. We have to com-
pute 𝑃 (𝑆1), 𝑃 (𝑆2) and 𝑃 (𝑆1 ∩ 𝑆2): We know that 𝑃 (𝑆1) = 1/4 because there are 52 equally 
probable ways to draw the first card and 13 of them are spades. The same logic says that 
there are 52 equally probable ways the second card can be drawn, so 𝑃 (𝑆2) = 1/4. 
Aside: The probability 𝑃 (𝑆2) = 1/4 may seem surprising since the value of first card 
certainly affects the probabilities for the second card. However, if we look at all possible 
two card sequences we will see that every card in the deck has equal probability of being 
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the second card. Since 13 of the 52 cards are spades we get 𝑃 (𝑆2) = 13/52 = 1/4. Another 
way to say this is: if we are not given value of the first card then we have to consider all 
possibilities for the second card. 
Continuing, we compute 𝑃 (𝑆1 ∩ 𝑆2) by counting: 
Number of ways to draw a spade followed by a second spade: 13 ⋅ 12. 
Number of ways to draw any card followed by any other card: 52 ⋅ 51. 
Thus, 

13 ⋅ 12𝑃 (𝑆1 ∩ 𝑆2) = 51 
= 3/51.52 ⋅ 

Now, using (1) we get 

𝑃 (𝑆2 ∩ 𝑆1) 3/51𝑃 (𝑆2|𝑆1) = = = 12/51.𝑃 (𝑆1) 1/4 

This case is simple enough that we can check our answer by computing the conditional 
probability directly: if the first card is a spade then of the 51 cards remaining, 12 are 
spades. So, the probability the second card is also a spade is 

𝑃 (𝑆2|𝑆1) = 12/51. 
Warning: In more complicated problems it will be be much harder to compute conditional 
probability by counting. Usually we have to use Equation (1). 
Think: For 𝑆1 and 𝑆2 in the previous example, what is 𝑃 (𝑆2|𝑆1

𝑐)? 

3 Multiplication Rule 

The following formula is called the multiplication rule. 

𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴|𝐵) ⋅ 𝑃 (𝐵). (2) 

This is simply a rewriting of the definition in Equation (1) of conditional probability. We 
will see that our use of the multiplication rule is very similar to our use of the rule of 
product in counting. In fact, the multiplication rule is just a souped up version of the rule 
of product. 
We start by verifying the multiplication rule for the previous example. 
Example 3. Draw two cards from a deck. Define the events: 𝑆1 = ‘first card is a spade’ 
and 𝑆2 = ‘second card is a spade’. Verify the multiplication rule. 
Solution: From the previous example, we know 𝑃 (𝑆2|𝑆1) = 12/51, 𝑃 (𝑆1 ∩ 𝑆2) = 3/51, 𝑃 (𝑆1) = 
1/4. From this it is easy to check that 

12 1 3𝑃 (𝑆2|𝑆1) ⋅ 𝑃 (𝑆1) = ⋅ 51 
= 𝑃 (𝑆1 ∩ 𝑆2).51 4 = 

4 Law of Total Probability 

The law of total probability will allow us to use the multiplication rule to find probabilities 
in more interesting examples. It involves a lot of notation, but the idea is fairly simple. We 
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state the law when the sample space is divided into 3 pieces. It is a simple matter to extend 
the rule when there are more than 3 pieces. 
Law of Total Probability 

Suppose the sample space Ω is divided into 3 disjoint events 𝐵1, 𝐵2, 𝐵3 (see the figure 
below). Then for any event 𝐴: 

𝑃(𝐴) = 𝑃(𝐴 ∩ 𝐵1) + 𝑃(𝐴 ∩ 𝐵2) + 𝑃(𝐴 ∩ 𝐵3)
𝑃 (𝐴) = 𝑃 (𝐴|𝐵1) 𝑃 (𝐵1) + 𝑃 (𝐴|𝐵2) 𝑃 (𝐵2) + 𝑃 (𝐴|𝐵3) 𝑃 (𝐵3) (3) 

The top equation says ‘if 𝐴 is divided into 3 pieces then 𝑃 (𝐴) is the sum of the probabilities 
of the pieces’. The bottom equation (3) is called the law of total probability. It is just a 
rewriting of the top equation using the multiplication rule. 

Ω

𝐵3𝐵2

𝐵1
A ∩ B1

A ∩ B2 A ∩ B3

The sample space Ω and the event 𝐴 are each divided into 3 disjoint pieces. 
The law holds if we divide Ω into any number of events, so long as they are disjoint and 
cover all of Ω. Such a division is often called a partition of Ω. 
Our first example will be one where we already know the answer and can verify the law. 
Example 4. An urn contains 5 red balls and 2 green balls. Two balls are drawn one after 
the other. What is the probability that the second ball is red? 

Solution: The sample space is Ω = {rr, rg, gr, gg}. 
Let 𝑅1 be the event ‘the first ball is red’, 𝐺1 = ‘first ball is green’, 𝑅2 = ‘second ball is 
red’, 𝐺2 = ‘second ball is green’. We are asked to find 𝑃 (𝑅2). 
Let’s compute this same value using the law of total probability (3). First, we’ll find the 
conditional probabilities. This is a simple counting exercise. 

𝑃 (𝑅2|𝑅1) = 4/6, 𝑃 (𝑅2|𝐺1) = 5/6. 

Since 𝑅1 and 𝐺1 partition Ω the law of total probability says 

𝑃 (𝑅2) = 𝑃 (𝑅2|𝑅1)𝑃 (𝑅1) + 𝑃 (𝑅2|𝐺1)𝑃 (𝐺1) (4) 

4 5 2= ⋅ 7 + 5 ⋅6 6 7 

30 5= 42 
= 7 . 



18.05 Class 3, Conditional Probability, Independence and Bayes’ Theorem, Spring 2022 5 

Of course, this example is simple enough that we could have computed 𝑃 (𝑅2) directly the 
same way we found 𝑃 (𝑆2) directly in the card example. But, we will see that in more 
complicated examples the law of total probability is truly necessary. 

Probability urns 

The example above used probability urns. Their use goes back to the beginning of the 
subject and we would be remiss not to introduce them. This toy model is very useful. We 
quote from Wikipedia: https://en.wikipedia.org/wiki/Urn_problem 

In probability and statistics, an urn problem is an idealized mental exercise 
in which some objects of real interest (such as atoms, people, cars, etc.) are 
represented as colored balls in an urn or other container. One pretends to draw 
(remove) one or more balls from the urn; the goal is to determine the probability 
of drawing one color or another, or some other properties. A key parameter is 
whether each ball is returned to the urn after each draw. 

It doesn’t take much to make an example where (3) is really the best way to compute the 
probability. Here is a game with slightly more complicated rules. 
Example 5. An urn contains 5 red balls and 2 green balls. A ball is drawn. If it’s green 
a red ball is added to the urn and if it’s red a green ball is added to the urn. (The original 
ball is not returned to the urn.) Then a second ball is drawn. What is the probability the 
second ball is red? 

Solution: The law of total probability says that 𝑃 (𝑅2) can be computed using the expres-
sion in Equation (4). Only the values for the probabilities will change. We have 

𝑃 (𝑅2|𝑅1) = 4/7, 𝑃 (𝑅2|𝐺1) = 6/7. 
Therefore, 

4 5 2 32𝑃 (𝑅2) = 𝑃 (𝑅2|𝑅1)𝑃 (𝑅1) + 𝑃 (𝑅2|𝐺1)𝑃 (𝐺1) = ⋅ 7 
+ 

6 ⋅ =7 7 7 49. 

5 Using Trees to Organize the Computation 

Trees are a great way to organize computations with conditional probability and the law of 
total probability. The figures and examples will make clear what we mean by a tree. As 
with the rule of product, the key is to organize the underlying process into a sequence of 
actions. 
We start by redoing Example 5. The sequence of actions are: first draw ball 1 (and add the 
appropriate ball to the urn) and then draw ball 2. 

𝐺1𝑅1

𝑅2 𝐺2 𝑅2 𝐺2

5/7 2/7

4/7 3/7 6/7 1/7

https://en.wikipedia.org/wiki/Urn_problem


18.05 Class 3, Conditional Probability, Independence and Bayes’ Theorem, Spring 2022 6 

You interpret this tree as follows. Each dot is called a node. The tree is organized by levels. 
The top node (root node) is at level 0. The next layer down is level 1 and so on. Each level 
shows the outcomes at one stage of the game. Level 1 shows the possible outcomes of the 
first draw. Level 2 shows the possible outcomes of the second draw starting from each node 
in level 1. 
Probabilities are written along the branches. The probability of 𝑅1 (red on the first draw) 
is 5/7. It is written along the branch from the root node to the one labeled 𝑅1. At the 
next level we put in conditional probabilities. The probability along the branch from 𝑅1 to
𝑅2 is 𝑃 (𝑅2|𝑅1) = 4/7. It represents the probability of going to node 𝑅2 given that you are 
already at 𝑅1. 
The muliplication rule says that the probability of getting to any node is just the product of 
the probabilities along the path to get there. For example, the node labeled 𝑅2 at the far left 
really represents the event 𝑅1 ∩ 𝑅2 because it comes from the 𝑅1 node. The multiplication 
rule now says 

𝑃(𝑅1 ∩ 𝑅2) = 𝑃(𝑅1) ⋅ 𝑃 (𝑅2|𝑅1) = 
5 ⋅ 7

4 ,7 

which is exactly multiplying along the path to the node. 
The law of total probability is just the statement that 𝑃 (𝑅2) is the sum of the probabilities 
of all paths leading to 𝑅2 (the two circled nodes in the figure). In this case, 

5 4 6 32𝑃(𝑅2) = ⋅ 7 + 2 ⋅ 7 =7 7 49, 

exactly as in the previous example. 

5.1 Shorthand vs. precise trees 

The tree given above involves some shorthand. For example, the node marked 𝑅2 at the 
far left really represents the event 𝑅1 ∩ 𝑅2, since it ends the path from the root through 
𝑅1 to 𝑅2. Here is the same tree with everything labeled precisely. As you can see this tree 
is more cumbersome to make and use. We usually use the shorthand version of trees. You 
should make sure you know how to interpret them precisely. 

𝐺1𝑅1

𝑅1 ∩ 𝑅2 𝑅1 ∩ 𝐺2 𝐺1 ∩ 𝑅2 𝐺1 ∩ 𝐺2

𝑃(𝑅1) = 5/7 𝑃(𝐺1) = 2/7

𝑃(𝑅2|𝑅1) = 4/7 𝑃(𝐺2|𝑅1) = 3/7 𝑃(𝑅2|𝐺1) = 6/7 𝑃(𝐺2|𝐺1) = 1/7

6 Independence 

Two events are independent if knowledge that one occurred does not change the probability 
that the other occurred. Informally, events are independent if they do not influence one 
another. 
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Example 6. Toss a coin twice. We expect the outcomes of the two tosses to be independent 
of one another. In real experiments this always has to be checked. If my coin lands in honey 
and I don’t bother to clean it, then the second toss might be affected by the outcome of the 
first toss. 
More seriously, the independence of experiments can by undermined by the failure to clean or 
recalibrate equipment between experiments or to isolate supposedly independent observers 
from each other or a common influence. We’ve all experienced hearing the same ‘fact’ from 
different people. Hearing it from different sources tends to lend it credence until we learn 
that they all heard it from a common source. That is, our sources were not independent. 
Translating the verbal description of independence into symbols gives 

𝐴 is independent of 𝐵 if 𝑃 (𝐴|𝐵) = 𝑃 (𝐴). (5) 

That is, knowing that 𝐵 occurred does not change the probability that 𝐴 occurred. In 
terms of events as subsets, knowing that the realized outcome is in 𝐵 does not change the 
probability that it is in 𝐴. 
If 𝐴 and 𝐵 are independent in the above sense, then the multiplication rule gives 

𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴|𝐵) ⋅ 𝑃 (𝐵) = 𝑃 (𝐴) ⋅ 𝑃 (𝐵). 

This justifies the following technical definition of independence. 
Formal definition of independence: Two events 𝐴 and 𝐵 are independent if 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) ⋅ 𝑃 (𝐵) (6) 

This is a nice symmetric definition which makes clear that 𝐴 is independent of 𝐵 if and only 
if 𝐵 is independent of 𝐴. Unlike the equation with conditional probabilities, this definition 
makes sense even when 𝑃(𝐵) = 0. In terms of conditional probabilities, we have: 
1. If 𝑃(𝐵) ≠ 0 then 𝐴 and 𝐵 are independent if and only if 𝑃 (𝐴|𝐵) = 𝑃 (𝐴). 
2. If 𝑃(𝐴) ≠ 0 then 𝐴 and 𝐵 are independent if and only if 𝑃 (𝐵|𝐴) = 𝑃 (𝐵). 
Independent events commonly arise as different trials in an experiment, as in the following 
example. 
Example 7. Toss a fair coin twice. Let 𝐻1 = ‘heads on first toss’ and let 𝐻2 = ‘heads on 
second toss’. Are 𝐻1 and 𝐻2 independent? 

Solution: Since 𝐻1 ∩ 𝐻2 is the event ‘both tosses are heads’ we have 

𝑃 (𝐻1 ∩ 𝐻2) = 1/4 = 𝑃 (𝐻1)𝑃 (𝐻2). 

Therefore the events are independent. 
We can ask about the independence of any two events, as in the following two examples. 
Example 8. Toss a fair coin 3 times. Let 𝐻1 = ‘heads on first toss’ and 𝐴 = ‘two heads 
total’. Are 𝐻1 and 𝐴 independent? 

Solution: We know that 𝑃 (𝐴) = 3/8. Since this is not 0 we can check if the formula in 
Equation 5 holds. Now, 𝐻1 = {HHH, HHT, HTH, HTT} contains exactly two outcomes 
(𝐻𝐻𝑇 , 𝐻𝑇 𝐻) from 𝐴, so we have 𝑃 (𝐴|𝐻1) = 2/4. Since 𝑃 (𝐴|𝐻1) ≠ 𝑃 (𝐴) these events 
are not independent. 
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Example 9. Draw one card from a standard deck of playing cards. Let’s examine the 
independence of 3 events ‘the card is an ace’, ‘the card is a heart’ and ‘the card is red’. 
Define the events as 𝐴 = ‘ace’, 𝐻 = ‘hearts’, 𝑅 = ‘red’. 
(a) We know that 𝑃 (𝐴) = 4/52 (4 out of 52 cards are aces), 𝑃(𝐴|𝐻) = 1/13 (1 out of 13 
hearts are aces). Since 𝑃(𝐴) = 𝑃(𝐴|𝐻) we have that 𝐴 is independent of 𝐻. 
(b) 𝑃 (𝐴|𝑅) = 2/26 = 1/13 = 𝑃 (𝐴). So 𝐴 is independent of 𝑅. That is, whether the card 
is an ace is independent of whether it is red. 
(c) Finally, what about 𝐻 and 𝑅? Since 𝑃(𝐻) = 1/4 and 𝑃(𝐻|𝑅) = 1/2, 𝐻 and 𝑅 are not 
independent. We could also see this the other way around: 𝑃 (𝑅) = 1/2 and 𝑃(𝑅|𝐻) = 1, 
so 𝐻 and 𝑅 are not independent. That is, the suit of a card is not independent of the color 
of the card’s suit. 

6.1 Paradoxes of Independence 

An event 𝐴 with probability 0 is independent of itself, since in this case both sides of 
equation (6) are 0. This appears paradoxical because knowledge that 𝐴 occurred certainly 
gives information about whether 𝐴 occurred. We resolve the paradox by noting that since 
𝑃(𝐴) = 0 the statement ‘𝐴 occurred’ is vacuous. 
Think: For what other value(s) of 𝑃 (𝐴) is 𝐴 independent of itself? 

7 Bayes’ Theorem 

Bayes’ theorem is a pillar of both probability and statistics and it is central to the rest of 
this course. For two events 𝐴 and 𝐵 Bayes’ theorem (also called Bayes’ rule and Bayes’ 
formula) says 

𝑃 (𝐴|𝐵) ⋅ 𝑃 (𝐵) 𝑃 (𝐵|𝐴) = . (7)𝑃 (𝐴) 

Comments: 1. Bayes’ rule tells us how to ‘invert’ conditional probabilities, i.e. to find
𝑃 (𝐵|𝐴) from 𝑃 (𝐴|𝐵). 
2. In practice, 𝑃 (𝐴) is often computed using the law of total probability. 
Proof of Bayes’ rule 
The key point is that 𝐴 ∩ 𝐵 is symmetric in 𝐴 and 𝐵. So the multiplication rule says 

𝑃 (𝐵|𝐴) ⋅ 𝑃 (𝐴) = 𝑃 (𝐴 ∩ 𝐵) = 𝑃 (𝐴|𝐵) ⋅ 𝑃 (𝐵). 

Now divide through by 𝑃 (𝐴) to get Bayes’ rule. 

A common mistake is to confuse the meanings of 𝑃 (𝐴|𝐵) and 𝑃 (𝐵|𝐴). They can be very 
different. This is illustrated in the next example. 

Example 10. Toss a coin 5 times. Let 𝐻1 = ‘first toss is heads’ and let 𝐻𝐴 = ‘all 5 tosses 
are heads’. Then 𝑃 (𝐻1|𝐻𝐴) = 1 but 𝑃 (𝐻𝐴|𝐻1) = 1/16. 
For practice, let’s use Bayes’ theorem to compute 𝑃 (𝐻1|𝐻𝐴) using 𝑃 (𝐻𝐴|𝐻1).The terms 
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are 𝑃 (𝐻𝐴|𝐻1) = 1/16, 𝑃 (𝐻1) = 1/2, 𝑃 (𝐻𝐴) = 1/32. So, 

𝑃 (𝐻𝐴|𝐻1)𝑃 (𝐻1) (1/16) ⋅ (1/2)𝑃 (𝐻1|𝐻𝐴) = = = 1,𝑃 (𝐻𝐴) 1/32 

which agrees with our previous calculation. 

7.1 The Base Rate Fallacy 

The base rate fallacy is one of many examples showing that it’s easy to confuse the meaning 
of 𝑃 (𝐵|𝐴) and 𝑃 (𝐴|𝐵) when a situation is described in words. This is one of the key 
examples from probability and it will inform much of our practice and interpretation of 
statistics. You should strive to understand it thoroughly. 
Example 11. The Base Rate Fallacy 
Consider a routine screening test for a disease. Suppose the frequency of the disease in the 
population (base rate) is 0.5%. The test is fairly accurate with a 5% false positive rate and 
a 10% false negative rate. 
You take the test and it comes back positive. What is the probability that you have the 
disease? 

Solution: We will do the computation three times: using trees, tables and symbols. We’ll 
use the following notation for the relevant events: 
𝐷+ = ‘you have the disease’ 
𝐷− = ‘you do not have the disease 
𝑇 + = ‘you tested positive’ 
𝑇 − = ‘you tested negative’. 
We are given 𝑃 (𝐷+) = 0.005 and therefore 𝑃 (𝐷−) = 0.995. The false positive and false 
negative rates are (by definition) conditional probabilities. 

𝑃 (false positive) = 𝑃 (𝑇 +|𝐷−) = 0.05 and 𝑃 (false negative) = 𝑃 (𝑇 −|𝐷+) = 0.1. 

The complementary probabilities are known as the true negative and true positive rates: 

𝑃 (𝑇 −|𝐷−) = 1 − 𝑃 (𝑇 +|𝐷−) = 0.95 and 𝑃 (𝑇 +|𝐷+) = 1 − 𝑃 (𝑇 −|𝐷+) = 0.9. 

Trees: All of these probabilities can be displayed quite nicely in a tree. 

𝐷+𝐷−

𝑇 + 𝑇 −𝑇 + 𝑇 −

0.0050.995

0.9 0.10.05 0.95

The question asks for the probability that you have the disease given that you tested positive, 
i.e. what is the value of 𝑃 (𝐷+|𝑇 +). We aren’t given this value, but we do know 𝑃 (𝑇 +|𝐷+), 
so we can use Bayes’ theorem. 

𝑃 (𝑇 +|𝐷+) ⋅ 𝑃 (𝐷+)𝑃 (𝐷+|𝑇 +) = .𝑃 (𝑇 +) 
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The two probabilities in the numerator are given. We compute the denominator 𝑃 (𝑇 +)
using the law of total probability. Using the tree, we just have to sum the probabilities for 
each of the nodes marked 𝑇 + 

𝑃 (𝑇 +) = 0.995 × 0.05 + 0.005 × 0.9 = 0.05425 

Thus, 
0.9 × 0.005 𝑃 (𝐷+|𝑇 +) = = 0.082949 ≈ 8.3%. 0.05425 

Remarks: This is called the base rate fallacy because the base rate of the disease in the 
population is so low that the vast majority of the people taking the test are healthy, and 
even with an accurate test most of the positives will be healthy people. Ask your doctor 
for his/her guess at the odds. 
To summarize the base rate fallacy with specific numbers 

95% of all tests are accurate does not imply 95% of positive tests are accurate 

We will refer back to this example frequently. It and similar examples are at the heart of 
many statistical misunderstandings. 
Other ways to work Example 11 

Tables: Another trick that is useful for computing probabilities is to make a table. Let’s 
redo the previous example using a table built with 10000 total people divided according to 
the probabilites in this example. 
We construct the table as follows. Pick a number, say 10000 people, and place it as the 
grand total in the lower right. Using 𝑃 (𝐷+) = 0.005 we compute that 50 out of the 10000 
people are sick (𝐷+). Likewise 9950 people are healthy (𝐷−). At this point the table looks 
like: 

𝐷+ 𝐷− total 
𝑇 + 

𝑇 − 

total 50 9950 10000 

Using 𝑃 (𝑇 +|𝐷+) = 0.9 we can compute that the number of sick people who tested positive 
as 90% of 50 or 45. The other entries are similar. At this point the table looks like the 
table below on the left. Finally we sum the 𝑇 + and 𝑇 − rows to get the completed table on 
the right. 

𝐷+ 𝐷− total 
𝑇 + 45 498 
𝑇 − 5 9452 

total 50 9950 10000 

𝐷+ 𝐷− total 
𝑇 + 45 498 543 
𝑇 − 5 9452 9457 

total 50 9950 10000 

Using the complete table we can compute 

|𝐷+ ∩ 𝑇 +| 45𝑃 (𝐷+|𝑇 +) = = 543 
= 8.3%.|𝑇 +| 

Symbols: For completeness, we show how the solution looks when written out directly in 
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symbols. 

𝑃 (𝑇 +|𝐷+) ⋅ 𝑃 (𝐷+)𝑃 (𝐷+|𝑇 +) = 𝑃 (𝑇 +)
𝑃 (𝑇 +|𝐷+) ⋅ 𝑃 (𝐷+)= 𝑃 (𝑇 +|𝐷+) ⋅ 𝑃 (𝐷+) + 𝑃 (𝑇 +|𝐷−) ⋅ 𝑃 (𝐷−)

0.9 × 0.005 = 0.9 × 0.005 + 0.05 × 0.995 
= 8.3% 

Visualization: The figure below illustrates the base rate fallacy. The large blue rectangle 
represents all the healthy people. The much smaller orange rectangle represents the sick 
people. The shaded rectangle represents the people who test positive. The shaded area 
covers most of the orange area and only a small part of the blue area. Even so, the most of 
the shaded area is over the blue. That is, most of the positive tests are of healthy people. 

𝐷− 𝐷+

7.2 Bayes’ rule in 18.05 

As we said at the start of this section, Bayes’ rule is a pillar of probability and statistics. 
We have seen that Bayes’ rule allows us to ‘invert’ conditional probabilities. When we study 
statistics we will see that the art of statistical inference involves deciding how to proceed 
when one (or more) of the terms on the right side of Bayes’ rule is unknown. 



MIT OpenCourseWare 

https://ocw.mit.edu 

18.05 Introduction to Probability and Statistics 
Spring 2022 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	1 Learning Goals
	2 Conditional Probability
	3 Multiplication Rule
	4 Law of Total Probability
	5 Using Trees to Organize the Computation
	5.1 Shorthand vs. precise trees

	6 Independence
	6.1 Paradoxes of Independence

	7 Bayes' Theorem
	7.1 The Base Rate Fallacy
	7.2 Bayes' rule in 18.05


