Class 3 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1.

Toss a coin 4 times. Let A = `at least three heads' and B = `first toss is tails'.1. What is P(A|B)?

(a)
$$1/16$$
 (b) $1/8$ (c) $1/4$ (d) $1/5$

2. What is P(B|A)?

(a) 1/16 (b) 1/8 (c) 1/4 (d) 1/5

Solution: 1. (b) 1/8. 2. (d) 1/5.

Counting we find |A| = 5, |B| = 8 and $|A \cap B| = 1$. Since all sequences are equally likely

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|}{|B|} = 1/8. \quad P(B|A) = \frac{|B \cap A|}{|A|} = 1/5.$$

Concept question 2. Trees 1.

1. The probability x represents

(a) $P(A_1)$ (b) $P(A_1|B_2)$ (c) $P(B_2|A_1)$ (d) $P(C_1|B_2 \cap A_1)$. Solution: (a) $P(A_1)$.

Concept question 3. Trees 2.

2. The probability y represents (a) $P(B_2)$ (b) $P(A_1|B_2)$ (c) $P(B_2|A_1)$ (d) $P(C_1|B_2 \cap A_1)$.

Solution: (c) $P(B_2|A_1)$.

Concept question 4. Trees 3.

3. The probability z represents (a) $P(C_1)$ (b) $P(B_2|C_1)$ (c) $P(C_1|B_2)$ (d) $P(C_1|B_2 \cap A_1)$. Solution: (d) $P(C_1|B_2 \cap A_1)$.

Concept question 5. Trees 4.

4. The circled node represents the event (a) C_1 (b) $B_2 \cap C_1$ (c) $A_1 \cap B_2 \cap C_1$ (d) $C_1|B_2 \cap A_1$. Solution: (c) $A_1 \cap B_2 \cap C_1$.

In class examples

Class example 1.

- Organize computations
- Compute total probability
- Compute Bayes' formula

Example. Game: 5 orange and 2 blue balls in an urn. A random ball is selected and replaced by a ball of the other color; then a second ball is drawn.

- 1. What is the probability the second ball is orange?
- 2. What is the probability the first ball was orange given the second ball was orange?

Solution: 1. Let O_1 be the event the first ball is orange. Likewise for O_2 , B_1 , B_2 . The law of total probability gives $P(O_2) = \frac{5}{7} \cdot \frac{4}{7} + \frac{2}{7} \cdot \frac{6}{7} = \frac{32}{49}$ 2. Bayes' rule gives $P(O_1|O_2) = \frac{P(O_1 \cap O_2)}{P(O_2)} = \frac{20/49}{32/49} = \frac{20}{32}$

Board questions

Problem 1. Monty Hall

- One door hides a car, two hide goats.
- The contestant chooses any door.
- Monty always opens a different door with a goat. (He can do this because he knows where the car is.)
- The contestant is then allowed to switch doors if they want.

What is the best strategy for winning a car? (a) Switch (b) Don't switch (c) It doesn't matter

Organize the Monty Hall problem into a tree and compute the probability of winning if you always switch.

Hint first break the game into a sequence of actions.

Solution: Let P_{switch} be the probability function when the contestant uses the switching strategy. Let C represent a car and G a goat.

We will see that $P_{\text{switch}}(C) = 2/3$

One way to show this is with a tree representing the switching strategy: First the contestant chooses a door, (then Monty shows a goat), then the contestant switches doors.

The (total) probability of C is $P_{\rm switch}(C)=\frac{1}{3}\cdot 0+\frac{2}{3}\cdot 1=\frac{2}{3}.$

Writing this in symbols using the law of total probability: Here G_1 represents a goat is behind the original door chosen and G_2 means a goat is behind the door that is switched to. Likewise C_1 and C_2 .

$$P_{\rm switch}(C_2) = P_{\rm switch}(C_2|C_1)P(C_1) + P_{\rm switch}(C_2|G_1)P(G_1) = 0 \cdot \frac{1}{3} + 1 \cdot \frac{2}{3} = \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{2}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} = \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} = \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{3$$

Problem 2. Independence

Roll two dice and consider the following events

- A = `first die is 3'
- B = `sum is 6'
- C = `sum is ?'

A is independent of

(a) B and C (b) B alone (c) C alone (d) Neither B or C.
Solution: (c). (Explanation below)
P(A) = 1/6, P(A|B) = 1/5. Not equal, so not independent.
P(A) = 1/6, P(A|C) = 1/6. Equal, so independent.

Notice that knowing B, removes 6 as a possibility for the first die and makes A more probable. So, knowing B occurred changes the probability of A.

But, knowing C does not change the probabilities for the possible values of the first roll; they are still 1/6 for each value. In particular, knowing C occured does not change the probability of A.

We could also have done this problem by showing

$$P(B|A) \neq P(B)$$
 or $P(A \cap B) \neq P(A)P(B)$.

Problem 3. Evil Squirrels

Of the one million squirrels on MIT's campus most are good-natured. But one hundred of them are pure evil! An enterprising student in Course 6 develops an "Evil Squirrel Alarm" which they offer to sell to MIT for a passing grade. MIT decides to test the reliability of the alarm by conducting trials.

© <u>Bigmacthealmanac</u>. Some rights reserved. License: CC BY-SA. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/fairuse</u>.

- When presented with an evil squirrel, the alarm goes off 99% of the time.
- When presented with a good-natured squirrel, the alarm goes off 1% of the time.

(a) If a squirrel sets off the alarm, what is the probability that it is evil?

(b) Should MIT co-opt the patent rights and employ the system?

One solution

(This is a base rate fallacy problem)

We are given:

 $\begin{aligned} P(\text{nice}) &= 0.9999, P(\text{evil}) = 0.0001 \text{ (base rate)} \\ P(\text{alarm} \mid \text{nice}) &= 0.01, P(\text{alarm} \mid \text{evil}) = 0.99 \end{aligned}$

$$\begin{split} P(\operatorname{evil} | \operatorname{alarm}) &= \frac{P(\operatorname{alarm} | \operatorname{evil})P(\operatorname{evil})}{P(\operatorname{alarm})} \\ &= \frac{P(\operatorname{alarm} | \operatorname{evil})P(\operatorname{evil})}{P(\operatorname{alarm} | \operatorname{evil})P(\operatorname{evil}) + P(\operatorname{alarm} | \operatorname{nice})P(\operatorname{nice})} \\ &= \frac{(0.99)(0.0001)}{(0.99)(0.0001) + (0.01)(0.9999)} \\ &\approx 0.01 \end{split}$$

Summary:

Probability a random test is $correct =$	0.99
Probability a positive test is correct \approx	0.01

These probabilities are not the same!

Alternative method of calculation:

	Evil	Nice	
Alarm	99	9999	10098
No alarm	1	989901	989902
	100	999900	1000000

Solution: (a) This is the same solution as above, but in a more compact notation. Let E be the event that a squirrel is evil. Let A be the event that the alarm goes off. By Bayes' Theorem, we have:

$$\begin{split} P(E \mid A) &= \frac{P(A \mid E) P(E)}{P(A \mid E) P(E) + P(A \mid E^c) P(E^c)} \\ &= \frac{0.99 \frac{100}{1000000}}{(0.99) \cdot \left(\frac{100}{1000000}\right) + (0.01) \cdot \left(\frac{999900}{1000000}\right)} \\ &\approx 0.01. \end{split}$$

(b) No. The alarm would be more trouble than its worth, since for every true positive there are about 99 false positives.

Problem 4. Dice Game

- 1. The Randomizer holds the 6-sided die in one fist and the 8-sided die in the other.
- 2. The Roller selects one of the Randomizer's fists and covertly takes the die.
- 3. The Roller rolls the die in secret and reports the result to the table.

Given the reported number, what is the probability that the 6-sided die was chosen? (Find the probability for each possible reported number.)

Solution: If the number rolled is 1-6 then P(six-sided) = 4/7.

If the number rolled is 7 or 8 then P(six-sided) = 0.

This is a Bayes' formula problem. For concreteness let's suppose the roll was a 4. What we want to compute is P(6-sided|roll 4). But, what is easy to compute is P(roll 4|6-sided). Bayes' formula says

$$P(6\text{-sided}|\text{roll }4) = \frac{P(\text{roll }4|6\text{-sided})P(6\text{-sided})}{P(4)}$$
$$= \frac{(1/6)(1/2)}{(1/6)(1/2) + (1/8)(1/2)} = 4/7.$$

The denominator is computed using the law of total probability:

$$P(4) = P(4|6\text{-sided})P(6\text{-sided}) + P(4|8\text{-sided})P(8\text{-sided}) = \frac{1}{6} \cdot \frac{1}{2} + \frac{1}{8} \cdot \frac{1}{2}$$

Note that any roll of 1,2,...6 would give the same result. A roll of 7 (or 8) would give clearly give probability 0. This is seen in Bayes' formula because the term P(roll 7|6-sided) = 0.

MIT OpenCourseWare https://ocw.mit.edu

18.05 Introduction to Probability and Statistics Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.