Class 5 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. Order the variance
The graphs below give the pmf for 3 random variables.
(A)

(B)

Order them by size of standard deviation from biggest to smallest. (Assume x has the same units in all three.)

1. ABC
2. ACB
3. BAC
4. BCA
5. CAB
6. CBA

Concept question 2. Zero variance

Suppose X is a discrete random variable,
True or False: If $\operatorname{Var}(X)=0$ then X is constant.

Concept question 3. Standard deviation

Make an intuitive guess: Which pmf has the bigger standard deviation? (Assume w and y have the same units.)

1. Y 2. W

Concept question 4.

Suppose X is a continuous random variable.
(a) If the pdf of X is $f(x)$ can there be an x where $f(x)=10$?
(b) What is $P(X=a)$?
(c) Does $P(X=a)=0$ mean X never equals a ?

Concept question 5.

Which of the following are graphs of valid cumulative distribution functions?

Board questions

Problem 1.

(a) Let $X \sim \operatorname{Bernoulli}(p)$. Compute $\operatorname{Var}(X)$.
(b) Let $Y \sim \operatorname{Bin}(n, p)$. Show $\operatorname{Var}(Y)=n p(1-p)$.
(c) Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are independent and all have the same standard deviation $\sigma=2$. Let \bar{X} be the average of X_{1}, \ldots, X_{n}.
What is the standard deviation of \bar{X} ?

Problem 2.

Suppose X has range $[0,2]$ and pdf $f(x)=c x^{2}$.
(a) What is the value of c ?
(b) Compute the cdf $F(x)$.
(c) Compute $P(1 \leq X \leq 2)$.
(d) Plot the pdf and use it to illustrate part (c).

Problem 3.
Suppose Y has range $[0, b]$ and $\operatorname{cdf} F(y)=y^{2} / 9$.
(a) What is b ?
(b) Find the pdf of Y.

Problem 4.
I've noticed that taxis drive past 77 Mass. Ave. on the average of once every 10 minutes. Suppose time spent waiting for a taxi is modeled by an exponential random variable

$$
X \sim \text { Exponential }(1 / 10) ; \quad f(x)=\frac{1}{10} \mathrm{e}^{-x / 10}
$$

(a) Sketch the pdf of this distribution
(b) Shade the region which represents the probability of waiting between 3 and 7 minutes
(c) Compute the probability of waiting between between 3 and 7 minutes for a taxi
(d) Compute and sketch the cdf.

In class examples and discussion

Example. Computation from tables

Compute the variance and standard deviation of X.

values x	1	2	3	4	5
$\operatorname{pmf} p(x)$	$1 / 10$	$2 / 10$	$4 / 10$	$2 / 10$	$1 / 10$

Example. A very useful formula

Recompute the previous example using the very useful formula for variance

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}=\left(\sum_{i=1}^{n} p\left(x_{i}\right) x_{i}^{2}\right)-\mu^{2} .
$$

Extra problems

Extra 1. Let X take value 1, with equal probability on $\{1,2,3,4,5\}$ (X is a uniform random variable). Compute $\operatorname{Var}(X)$.
Let Y be uniform on $\{7,8,9,10,11\}$. What is the variance of Y ?

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

