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1 Learning Goals 

1. Be able to compute and interpret expectation, variance, and standard deviation for 
continuous random variables. 

2. Be able to compute and interpret quantiles for discrete and continuous random variables. 

2 Introduction 

So far we have looked at expected value, standard deviation, and variance for discrete 
random variables. These summary statistics have the same meaning for continuous random 
variables: 

• The expected value 𝜇 = 𝐸[𝑋] is a measure of location or central tendency. 

• The standard deviation 𝜎 is a measure of the spread or scale. 

• The variance 𝜎2 = Var(𝑋) is the square of the standard deviation. 

To move from discrete to continuous, we will simply replace the sums in the formulas by 
integrals. We will do this carefully and go through many examples in the following sections. 
In the last section, we will introduce another type of summary statistic, quantiles. You may 
already be familiar with the 0.5 quantile of a distribution, otherwise known as the median 
or 50th percentile. 

3 Expected value of a continuous random variable 

Definition: Let 𝑋 be a continuous random variable with range [𝑎, 𝑏] and probability 
density function 𝑓(𝑥). The expected value of 𝑋 is defined by 

𝐸[𝑋] = ∫
𝑏

𝑥𝑓(𝑥) 𝑑𝑥. 
𝑎 

Let’s see how this compares with the formula for a discrete random variable: 
𝑛 

𝐸[𝑋] = ∑ 𝑥𝑖𝑝(𝑥𝑖).
𝑖=1 

The discrete formula says to take a weighted sum of the values 𝑥𝑖 of 𝑋, where the weights 
are the probabilities 𝑝(𝑥𝑖). Recall that 𝑓(𝑥) is a probability density. Its units are 

1 
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prob/(unit of 𝑋). So 𝑓(𝑥) 𝑑𝑥 represents the probability that 𝑋 is in an infinitesimal range 
of width 𝑑𝑥 around 𝑥. Thus we can interpret the formula for 𝐸[𝑋] as a weighted integral 
of the values 𝑥 of 𝑋, where the weights are the probabilities 𝑓(𝑥) 𝑑𝑥. 
As before, the expected value is also called the mean or average. 

3.1 Examples 

Let’s go through several example computations. Where the solution requires an integration 
technique, we push the computation of the integral to the appendix. 
Example 1. Let 𝑋 ∼ uniform(0, 1). Find 𝐸[𝑋]. 
Solution: 𝑋 has range [0, 1] and density 𝑓(𝑥) = 1. Therefore, 

1 1𝑥2 1𝐸[𝑋] = ∫ 𝑥 𝑑𝑥 = ∣ = 2 .20 0 

Not surprisingly the mean is at the midpoint of the range. 

Example 2. Let 𝑋 have range [0, 2] and density 3
8𝑥2. Find 𝐸[𝑋]. 

Solution: 
2 2 23 3𝑥4 3𝐸[𝑋] = ∫ 𝑥𝑓(𝑥) 𝑑𝑥 = ∫ 8𝑥3 𝑑𝑥 = ∣ = 2 .320 0 0 

Does it make sense that this 𝑋 has mean is in the right half of its range? 

Solution: Yes. Since the probability density increases as 𝑥 increases over the range, the 
average value of 𝑥 should be in the right half of the range. 

𝑥

𝑓(𝑥)

1 𝜇 = 1.5

𝜇 is “pulled” to the right of the midpoint 1 because there is more mass to the right. 

Example 3. Let 𝑋 ∼ exp(𝜆). Find 𝐸[𝑋]. 
Solution: The range of 𝑋 is [0, ∞) and its pdf is 𝑓(𝑥) = 𝜆e−𝜆𝑥. So (details in appendix) 

∞ ∞ 

−𝑥e−𝜆𝑥 − 
e−𝜆𝑥 1𝐸[𝑋] = ∫ 𝑥𝜆e−𝜆𝑥 𝑑𝑥 = ∣ =𝜆 𝜆 

. 
0 0 

𝑥

𝑓(𝑥) = 𝜆e−𝜆𝑥

𝜇 = 1/𝜆

Mean of an exponential random variable 
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Example 4. Let 𝑍 ∼ N(0, 1). Find 𝐸[𝑍]. 

Solution: The range of 𝑍 is (−∞, ∞) and its pdf is 𝜙(𝑧) = √1
2𝜋 

e−𝑧2/2. So (details in 

appendix) 
∞ ∞ 

𝐸[𝑍] = ∫ √1
2𝜋𝑧e−𝑧2/2 𝑑𝑧 = −√1

2𝜋 
e−𝑧2/2∣ = 

−∞ −∞ 

0 . 

𝑧

𝜙(𝑧)

𝜇 = 0

The standard normal distribution is symmetric and has mean 0. 

3.2 Properties of 𝐸[𝑋] 

The properties of 𝐸[𝑋] for continuous random variables are the same as for discrete ones: 
1. If 𝑋 and 𝑌 are random variables on a sample space Ω then 

𝐸[𝑋 + 𝑌 ] = 𝐸[𝑋] + 𝐸[𝑌 ]. (linearity I) 

2. If 𝑎 and 𝑏 are constants then 

𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸[𝑋] + 𝑏. (linearity II) 

Example 5. In this example we verify that for 𝑋 ∼ N(𝜇, 𝜎) we have 𝐸[𝑋] = 𝜇. 
Solution: Example (4) showed that for standard normal 𝑍, 𝐸[𝑍] = 0. We could mimic 
the calculation there to show that 𝐸[𝑋] = 𝜇. Instead we will use the linearity properties of 
𝐸[𝑋]. In the class 5 notes on manipulating random variables we showed that if 𝑋 ∼ N(𝜇, 𝜎2)
is a normal random variable we can standardize it: 

𝑋 − 𝜇 𝑍 = ∼ N(0, 1). 𝜎 

Inverting this formula we have 𝑋 = 𝜎 𝑍 + 𝜇. The linearity of expected value now gives 

𝐸[𝑋] = 𝐸[𝜎 𝑍 + 𝜇] = 𝜎 𝐸[𝑍] + 𝜇 = 𝜇 

3.3 Expectation of Functions of 𝑋 

This works exactly the same as the discrete case. if ℎ(𝑥) is a function then 𝑌 = ℎ(𝑋) is a 
random variable and 

𝐸[𝑌 ] 
∞ 

= 𝐸[ℎ(𝑋)] = ∫ ℎ(𝑥)𝑓𝑋(𝑥) 𝑑𝑥. 
−∞ 

Example 6. Let 𝑋 ∼ exp(𝜆). Find 𝐸[𝑋2]. 
Solution: Using integration by parts we have 

𝐸[𝑋2] 
∞ ∞

𝑥2𝜆e−𝜆𝑥 𝑑𝑥 = [−𝑥2e−𝜆𝑥 − 
2𝑥 
𝜆 

e−𝜆𝑥 − 
2 
𝜆2 

e−𝜆𝑥]= ∫
0 0 

= 
2 
𝜆2 

. 
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4 Variance 

Now that we’ve defined expectation for continuous random variables, the definition of vari-
ance is identical to that of discrete random variables. 
Definition: Let 𝑋 be a continuous random variable with mean 𝜇. The variance of 𝑋 is 

Var(𝑋) = 𝐸[(𝑋 − 𝜇)2]. 

4.1 Properties of Variance 

These are exactly the same as in the discrete case. 
1. If 𝑋 and 𝑌 are independent then Var(𝑋 + 𝑌 ) = Var(𝑋) + Var(𝑌 ). 
2. For constants 𝑎 and 𝑏, Var(𝑎𝑋 + 𝑏) = 𝑎2Var(𝑋). 
3. Theorem: Var(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 = 𝐸[𝑋2] − 𝜇2. 
For Property 1, note carefully the requirement that 𝑋 and 𝑌 are independent. 
Property 3 gives a formula for Var(𝑋) that is often easier to use in hand calculations. The 
proofs of properties 2 and 3 are essentially identical to those in the discrete case. We will 
not give them here. 

Example 7. Let 𝑋 ∼ uniform(0, 1). Find Var(𝑋) and 𝜎𝑋. 
Solution: In Example 1 we found 𝜇 = 1/2. Next we compute 

1Var(𝑋) = 𝐸[(𝑋 − 𝜇)2] = ∫
1
(𝑥 − 1/2)2 𝑑𝑥 = 12 

. 
0 

Example 8. Let 𝑋 ∼ exp(𝜆). Find Var(𝑋) and 𝜎𝑋. 
Solution: In Examples 3 and 6 we computed 

∞ ∞
𝐸[𝑋] = ∫ 𝑥𝜆e−𝜆𝑥 𝑑𝑥 = 

1 and 𝐸[𝑋2] = ∫ 𝑥2𝜆e−𝜆𝑥 𝑑𝑥 = 
2 

0 𝜆 0 𝜆2 . 

So by Property 3, 
2 1 1Var(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2 = = and 𝜎𝑋 = 𝜆2 

− 𝜆
1
2 𝜆2 𝜆. 

We could have skipped Property 3 and computed this directly from Var(𝑋) = ∫∞(𝑥 − 1/𝜆)2𝜆e−𝜆𝑥 𝑑𝑥. 0 

Example 9. Let 𝑍 ∼ N(0, 1). Show Var(𝑍) = 1. 
Note: The notation for normal variables is 𝑋 ∼ N(𝜇, 𝜎2). This is certainly suggestive, but 
as mathematicians we need to prove that 𝐸[𝑋] = 𝜇 and Var(𝑋) = 𝜎2. Above we showed 
𝐸[𝑋] = 𝜇. This example shows that Var(𝑍) = 1, just as the notation suggests. In the next 
example we’ll show Var(𝑋) = 𝜎2. 
Solution: Since 𝐸[𝑍] = 0, we have 

Var(𝑍) = 𝐸[𝑍2] = 
∞ 

𝑧2e−𝑧2/2 𝑑𝑧. √1
2𝜋 

∫ 
−∞ 
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(using integration by parts with 𝑢 = 𝑧, 𝑣′ = 𝑧e−𝑧2/2 ⇒ 𝑢′ = 1, 𝑣 = −e−𝑧2/2) 

∞∞= √1
2𝜋 

(−𝑧e−𝑧2/2∣ ) + e−𝑧2/2 𝑑𝑧. 
−∞ 

√1
2𝜋 

∫ 
−∞ 

The first term equals 0 because the exponential goes to zero much faster than 𝑧 grows at 
both ±∞. The second term equals 1 because it is exactly the total probability integral of 
the pdf 𝜑(𝑧) for N(0, 1). So Var(𝑋) = 1. 

Example 10. Let 𝑋 ∼ N(𝜇, 𝜎2). Show Var(𝑋) = 𝜎2. 
Solution: This is an exercise in change of variables. Letting 𝑧 = (𝑥 − 𝜇)/𝜎, we have 

Var(𝑋) = 𝐸[(𝑋 − 𝜇)2] = 
∞

(𝑥 − 𝜇)2e−(𝑥−𝜇)2/2𝜎2 𝑑𝑥 √
2𝜋 𝜎 

1 ∫ 
−∞
∞𝜎2 

= 𝑧2e−𝑧2/2 𝑑𝑧 = 𝜎2.√
2𝜋 

∫ 
−∞ 

The integral in the last line is the same one we computed for Var(𝑍). 

5 Quantiles 

Definition: The median of 𝑋 is the value 𝑥 for which 𝑃(𝑋 ≤ 𝑥) = 0.5, i.e. the value 
of 𝑥 such that 𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑋 ≥ 𝑥). In other words, 𝑋 has equal probability of 
being above or below the median, and each probability is therefore 1/2. In terms of the 
cdf 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), we can equivalently define the median as the value 𝑥 satisfying
𝐹 (𝑥) = 0.5. 
Think: What is the median of 𝑍? 

Solution: By symmetry, the median is 0. 

Example 11. Find the median of 𝑋 ∼ exp(𝜆). 
Solution: The cdf of 𝑋 is 𝐹(𝑥) = 1 − e−𝜆𝑥. So the median is the value of 𝑥 for which 

𝐹(𝑥) = 1 − e−𝜆𝑥 = 0.5.. Solving for 𝑥 we find: 𝑥 = (ln 2)/𝜆 . 
Think: In this case the median does not equal the mean of 𝜇 = 1/𝜆. Based on the graph 
of the pdf of 𝑋 can you argue why the median is to the left of the mean. 

Definition: The pth quantile of 𝑋 is the value 𝑞𝑝 such that 𝑃(𝑋 ≤ 𝑞𝑝) = 𝑝. 
Notes. 1. In this notation the median is 𝑞0.5. 
2. We will usually write this in terms of the cdf: 𝐹 (𝑞𝑝) = 𝑝. 
With respect to the pdf 𝑓(𝑥), the quantile 𝑞𝑝 is the value such that there is an area of 𝑝 to 
the left of 𝑞𝑝 and an area of 1 − 𝑝 to the right of 𝑞𝑝. In the examples below, note how we 
can represent the quantile graphically using either area of the pdf or height of the cdf. 

Example 12. Find the 0.6 quantile for 𝑋 ∼ 𝑈(0, 1). 
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Solution: The cdf for 𝑋 is 𝐹(𝑥) = 𝑥 on the range [0,1]. So 𝑞0.6 = 0.6. 

𝑞0.6: left tail area = 0.6 ⇔ 𝐹 (𝑞0.6) = 0.6 

Example 13. Find the 0.6 quantile of the standard normal distribution. 
Solution: We don’t have a formula for the cdf, so we use the R ‘quantile function’ qnorm. 

𝑞0.6 = qnorm(0.6, 0, 1) = 0.25335 

𝑥

𝑓(𝑥)

𝑞0.6 = 0.6

left tail area = prob = 0.6

𝑥

𝐹(𝑥)

𝑞0.6 = 0.6

𝐹(𝑞0.6) = 0.6

1

𝑧

𝜙(𝑧)

𝑞0.6 = 0.253

left tail area = prob. = 0.6

𝑧

Φ(𝑧)

𝑞0.6 = 0.253

𝐹(𝑞0.6) = 0.6
1

𝑞0.6: left tail area = 0.6 ⇔ 𝐹 (𝑞0.6) = 0.6 

Quantiles give a useful measure of location for a random variable. We will use them more 
in coming lectures. 

5.1 Percentiles, deciles, quartiles 

For convenience, quantiles are often described in terms of percentiles, deciles or quartiles. 
The 60th percentile is the same as the 0.6 quantile. For example you are in the 60th percentile 
for height if you are taller than 60 percent of the population, i.e. the probability that you 
are taller than a randomly chosen person is 60 percent. 
Likewise, deciles represent steps of 1/10. The third decile is the 0.3 quantile. Quartiles are 
in steps of 1/4. The third quartile is the 0.75 quantile and the 75th percentile. 

6 Appendix: Integral Computation Details 

From Example 3 Let 𝑋 ∼ exp(𝜆). Find 𝐸[𝑋]. 
The range of 𝑋 is [0, ∞) and its pdf is 𝑓(𝑥) = 𝜆e−𝜆𝑥. Therefore 

𝐸[𝑋] = ∫
∞

𝑥𝑓(𝑥) 𝑑𝑥 = ∫
∞

𝜆𝑥e−𝜆𝑥 𝑑𝑥 
0 0 
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(using integration by parts with 𝑢 = 𝑥, 𝑣′ = 𝜆e−𝜆𝑥 ⇒ 𝑢′ = 1, 𝑣 = −e−𝜆𝑥) 

∞= −𝑥e−𝜆𝑥∣0 
+ ∫

∞ 

e−𝜆𝑥 𝑑𝑥 
0

∞ 

= 0 − 
e−𝜆𝑥 1∣ =𝜆 𝜆. 

0 

We used the fact that 𝑥e−𝜆𝑥 and e−𝜆𝑥 go to 0 as 𝑥 → ∞. 

From Example 4 Let 𝑍 ∼ N(0, 1). Find 𝐸[𝑍]. 

The range of 𝑍 is (−∞, ∞) and its pdf is 𝜙(𝑧) = √1
2𝜋 

e−𝑧2/2. By symmetry the mean must 

be 0. The only mathematically tricky part is to show that the integral converges, i.e. that 
the mean exists at all (some random variable do not have means, but we will not encounter 
this very often.) For completeness we include the argument, though this is not something 
we will ask you to do. We first compute the integral from 0 to ∞: 

∫
∞ 

𝑧𝜙(𝑧) 𝑑𝑧 = 
∞ 

𝑧e−𝑧2/2 𝑑𝑧. 
0 0 

√1
2𝜋 

∫ 

The 𝑢-substitution 𝑢 = 𝑧2/2 gives 𝑑𝑢 = 𝑧 𝑑𝑧. So the integral becomes 

∞
∞ 

𝑧e−𝑧2/2 𝑑𝑧. = 
∞ 

e−𝑢 𝑑𝑢 = −e−𝑢|0 = 1√1
2𝜋 

∫ √1
2𝜋 

∫ 
0 0 

Similarly, ∫
0 

𝑧𝜙(𝑧) 𝑑𝑧 = −1. Adding the two pieces together gives 𝐸[𝑍] = 0. 
−∞ 

From Example 6 Let 𝑋 ∼ exp(𝜆). Find 𝐸[𝑋2]. 

𝐸[𝑋2] = ∫
∞

𝑥2𝑓(𝑥) 𝑑𝑥 = ∫
∞

𝜆𝑥2e−𝜆𝑥 𝑑𝑥 
0 0 

(using integration by parts with 𝑢 = 𝑥2, 𝑣′ = 𝜆e−𝜆𝑥 ⇒ 𝑢′ = 2𝑥, 𝑣 = −e−𝜆𝑥) 

∞ 

= −𝑥2e−𝜆𝑥∣∞ + ∫ 2𝑥e−𝜆𝑥 𝑑𝑥 0 0 

(the first term is 0, for the second term use integration by parts: 𝑢 = 2𝑥, 𝑣′ = e−𝜆𝑥 ⇒ 
𝑢′ = 2, 𝑣 = − e−𝜆𝑥 )𝜆 

∞ 

= −2𝑥e−𝜆𝑥 ∞ e−𝜆𝑥 

∣ + ∫ 𝑑𝑥 𝜆 𝜆 0 0
∞ 

= 0 − 2e−𝜆𝑥 2∣ =𝜆2 𝜆2 
. 

0 
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