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1 Introduction 

In this appendix we give more formal mathematical material that is not strictly a part of 
18.05. This will not be on homework or tests. We give this material to emphasize that in 
doing mathematics we should be careful to specify our hypotheses completely and give clear 
deductive arguments to prove our claims. We hope you find it interesting and illuminating. 

2 With high probability the density histogram resembles the 
graph of the probability density function: 

We stated that one consequence of the law of large numbers is that as the number of samples 
increases the density histogram of the samples has an increasing probability of matching the 
graph of the underlying pdf or pmf. This is a good rule of thumb, but it is rather imprecise. 
It is possible to make more precise statements. It will take some care to make a sensible 
and precise statement, which will not be quite so sweeping. 
Suppose we have an experiment that produces data according to the random variable 𝑋 
and suppose we generate 𝑛 independent samples from 𝑋. Call them 

𝑥1, 𝑥2, … , 𝑥𝑛. 

By a bin we mean a range of values, i.e. (𝑏1, 𝑏2]. The data point 𝑥𝑘 is in this bin if
𝑏1 < 𝑥𝑘 ≤ 𝑏2. (For the left-most bin, we would use an interval closed on both sides.) To 
make a density histogram of the data we divide the range of 𝑋 into 𝑚 bins and calculate 
the fraction of the data in each bin. 
Now, let 𝑝𝑘 be the probability a random data point is in the 𝑘th bin. This is this probability 
for an indicator (Bernoulli) random variable 𝐵𝑘,𝑗 which is 1 if the 𝑗th data point is in the 
bin and and 0 otherwise. 
Statement 1. Let 𝑝𝑘̄ be the fraction of the data in bin 𝑘. As the number 𝑛 of data points 
gets large the probability that 𝑝𝑘̄ is close to 𝑝𝑘 approaches 1. Said differently, given any 
small number, call it 𝑎 the probability 𝑃 (|𝑝𝑘̄ − 𝑝𝑘| < 𝑎) depends on 𝑛, and as 𝑛 goes to 
infinity this probability goes to 1. 
Proof. Let 𝐵̄𝑘 be the average of 𝐵𝑘,𝑗. Since 𝐸[𝐵𝑘,𝑗] = 𝑝𝑘, the law of large number says 
exactly that 

𝑃(|𝐵̄𝑘 − 𝑝𝑘| < 𝑎) approaches 1 as 𝑛 goes to infinity. 
But, since the 𝐵𝑘,𝑗 are indicator variables, their average is exactly 𝑝𝑘̄, the fraction of the 
data in bin 𝑘. Replacing 𝐵̄𝑘 by 𝑝𝑘̄ in the above equation gives 

𝑃 (|𝑝𝑘̄ − 𝑝𝑘| < 𝑎) approaches 1 as 𝑛 goes to infinity. 

This is exactly what Statement 1 claimed. 
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Statement 2. The same statement holds for a finite number of bins simultaneously. That 
is, for bins 1 to 𝑚 we have 

𝑃( (|𝐵̄1−𝑝1| < 𝑎), (|𝐵̄2−𝑝2| < 𝑎), … , (|𝐵̄𝑚−𝑝𝑚| < 𝑎) ) approaches 1 as 𝑛 goes to infinity. 

Proof. First we note the following probability rule, which is a consequence of the inclusion 
exclusion principle: If two events 𝐴 and 𝐵 have 𝑃(𝐴) = 1 − 𝛼1 and 𝑃(𝐵) = 1 − 𝛼2 then
𝑃(𝐴 ∩ 𝐵) ≥ 1 − (𝛼1 + 𝛼2). 
Now, Statement 1 says that for any 𝛼 we can find 𝑛 large enough that 𝑃(|𝐵̄𝑘 − 𝑝𝑘| < 𝑎) > 
1 − 𝛼/𝑚 for each bin separately. By the probability rule, the probability of the intersection 
of all these events is at least 1 − 𝛼. Since we can let 𝛼 be as small as we want by letting 𝑛 
go to infinity, in the limit we get probability 1 as claimed. 
Statement 3. If 𝑓(𝑥) is a continuous probability density with range [𝑎, 𝑏] then by taking 
enough data and having a small enough bin width we can insure that with high probability 
the density histogram is as close as we want to the graph of 𝑓(𝑥). 
Proof. We will only sketch the argument. Assume the bin around 𝑥 has width is Δ𝑥. If
Δ𝑥 is small enough then the probability a data point is in the bin is approximately 𝑓(𝑥)Δ𝑥. 
Statement 2 guarantees that if 𝑛 is large enough then with high probability the fraction 
of data in the bin is also approximately 𝑓(𝑥)Δ𝑥. Since this is the area of the bin we see 
that its height will be approximately 𝑓(𝑥). That is, with high probability the height of the 
histogram over any point 𝑥 is close to 𝑓(𝑥). This is what Statement 3 claimed. 
Note. If the range is infinite or the density goes to infinity at some point we need to be 
more careful. There are statements we could make for these cases. 

3 The Chebyshev inequality 

One proof of the LoLN follows from the following key inequality. 
The Chebyshev inequality. Suppose 𝑌 is a random variable with mean 𝜇 and variance 𝜎2. 
Then for any positive value 𝑎, we have 

𝑃(|𝑌 − 𝜇| ≥ 𝑎) ≤ 
Var(𝑌 ) .𝑎2 

In words, the Chebyshev inequality says that the probability that 𝑌 differs from the mean 
by more than 𝑎 is bounded by Var(𝑌 )/𝑎2. Morally, the smaller the variance of 𝑌 , the 
smaller the probability that 𝑌 is far from its mean. 

Proof of the LoLN: Since Var(𝑋̄𝑛) = Var(𝑋)/𝑛, the variance of the average 𝑋̄𝑛 goes to 
zero as 𝑛 goes to infinity. So the Chebyshev inequality for 𝑌 = 𝑋̄𝑛 and fixed 𝑎 implies 
that as 𝑛 grows, the probability that 𝑋̄𝑛 is farther than 𝑎 from 𝜇 goes to 0. Hence the 
probability that 𝑋̄𝑛 is within 𝑎 of 𝜇 goes to 1, which is the LoLN. 
Proof of the Chebyshev inequality: The proof is essentially the same for discrete and 
continuous 𝑌 . We’ll assume 𝑌 is continuous and also that 𝜇 = 0, since replacing 𝑌 by 𝑌 −𝜇 
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does not change the variance. So 

−𝑎 ∞ −𝑎 ∞𝑦2 𝑦2
𝑃(|𝑌 | ≥ 𝑎) = ∫ 𝑓(𝑦) 𝑑𝑦 + ∫ 𝑓(𝑦) 𝑑𝑦 ≤ ∫ 𝑎2 𝑓(𝑦) 𝑑𝑦 + ∫ 𝑎2 𝑓(𝑦) 𝑑𝑦 

−∞ 𝑎 −∞ 𝑎 
∞ 𝑦2 Var(𝑌 ) ≤ ∫ 𝑎2 𝑓(𝑦) 𝑑𝑦 = . 

−∞ 𝑎2 

The first inequality uses that 𝑦2/𝑎2 ≥ 1 on the intervals of integration. The second in-
equality follows because including the range [−𝑎, 𝑎] only makes the integral larger, since the 
integrand is positive. 

4 The need for variance 

We didn’t lie to you, but we did gloss over one technical fact. Throughout we assumed 
that the underlying distributions had a variance. For example, the proof of the law of 
large numbers made use of the variance by way of the Chebyshev inequality. But there are 
distributions which do not have a mean and variance because the sums or integrals for these 
do not converge to a finite number. For such distributions the law of large numbers may 
not be true. 
In 18.05 we won’t have to worry about this, but if you go deeper into statistics this may 
become important. For those who are interested: a standard example you can look up or 
play with in R is the Cauchy distribution. 
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