Class 7 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. Independence I

Roll two dice: $X=$ value on first, $Y=$ value on second

$X \backslash Y$	1	2	3	4	5	6	$p\left(x_{i}\right)$
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 6$
$p\left(y_{j}\right)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	1

Are X and Y independent?

1. Yes
2. No

Concept question 2. Independence II
Roll two dice: $X=$ value on first, $T=$ sum

$X \backslash T$	2	3	4	5	6	7	8	9	10	11	12
$p\left(x_{i}\right)$											
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0	0
$1 / 6$											
2	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0	0
$1 / 6$											
3	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0	0
$1 / 6$											
4	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0	0
5	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	0
6	0	0	0	0	0	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

Are X and Y independent? 1. Yes $\quad 2$. No
Concept question 3. Independence III
Which of the following joint pdfs are the variables independent? (Each of the ranges is a rectangle chosen so that $\iint f(x, y) d x d y=1$.)
(i) $f(x, y)=4 x^{2} y^{3}$.
(ii) $f(x, y)=\frac{1}{2}\left(x^{3} y+x y^{3}\right)$.
(iii) $f(x, y)=6 e^{-3 x-2 y}$
(a) i
(b) ii
(c) iii
(d) i, ii
(e) i, iii
(f) ii, iii
(g) i, ii, iii
(h) None

Board questions

Problem 1. Joint distributions

Suppose X and Y are random variables and

- (X, Y) takes values in $[0,1] \times[0,1]$.
- the pdf is $f(x, y)=x+y$.
(a) Show $f(x, y)$ is a valid pdf.
(b) Visualize the event $A=$ ' $X>0.3$ and $Y>0.5$ '. Find its probability.
(c) Find the cdf $F(x, y)$.
(d) Use the $\operatorname{cdf} F(x, y)$ to find the marginal $\operatorname{cdf} F_{X}(x)$ and $P(X<0.5)$.
(e) Find the marginal pdf $f_{X}(x)$. Use this to find $P(X<0.5)$.
(f) (New scenario) From the following table compute $F(3.5,4)$.

$X \backslash Y$	1	2	3	4	5	6
1	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
2	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
3	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
4	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
5	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$
6	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$	$1 / 36$

Problem 2. Covariance and correlation
Flip a fair coin 11 times. (The tosses are all independent.)
Let $X=$ number of heads in the first 6 flips
Let $Y=$ number of heads on the last 6 flips.
Compute $\operatorname{Cov}(X, Y)$ and $\operatorname{Cor}(X, Y)$.

Problem 3. Even more tosses

Toss a fair coin $2 n+1$ times. Let X be the number of heads on the first $n+1$ tosses and Y the number on the last $n+1$ tosses.

Compute $\operatorname{Cov}(X, Y)$ and $\operatorname{Cor}(X, Y)$.

Extra

Discussion: Real-life correlations

- Over time, amount of ice cream consumption is correlated with number of pool drownings.
- In 1685 (and today) being a student is the most dangerous profession. That is, the average age of those who die is less than any other profession.
- In 90% of bar fights ending in a death the person who started the fight died.
- Hormone replacement therapy (HRT) is correlated with a lower rate of coronary heart disease (CHD).

Extra problem 1: Hospitals, binomial, CLT etc.
Here's one more problem. We won't do this in class.

- A certain town is served by two hospitals.
- Larger hospital: about 45 babies born each day.
- Smaller hospital about 15 babies born each day.
- For a period of 1 year, each hospital recorded the days on which more than 60% of the babies born were boys.
(a) Which hospital do you think recorded more such days?
(i) The larger hospital. (ii) The smaller hospital.
(iii) About the same (that is, within 5% of each other).
(b) Assume exactly 45 and 15 babies are born at the hospitals each day. Let L_{i} (resp., S_{i}) be the Bernoulli random variable which takes the value 1 if more than 60% of the babies born in the larger (resp., smaller) hospital on the $i^{\text {th }}$ day were boys. Determine the distribution of L_{i} and of S_{i}.
(c) Let L (resp., S) be the number of days on which more than 60% of the babies born in the larger (resp., smaller) hospital were boys. What type of distribution do L and S have? Compute the expected value and variance in each case.
(d) Via the CLT, approximate the 0.84 quantile of L (resp., S). Would you like to revise your answer to part (a)?
(e) What is the correlation of L and S ? What is the joint pmf of L and S ? Visualize the region corresponding to the event $L>S$. Express $P(L>S)$ as a double sum.

Extra problem 2: Correlation

(a) Flip a coin 3 times. Use a joint pmf table to compute the covariance and correlation between the number of heads on the first 2 and the number of heads on the last 2 flips.
(b) Flip a coin 5 times. Use properties of covariance to compute the covariance and correlation between the number of heads on the first 3 and last 3 flips.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

