Class 11 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. Learning from experience

(a) Which treatment would you choose?

1. Treatment 1: cured 100% of patients in a trial.
2. Treatment 2: cured 95% of patients in a trial.
3. Treatment 3: cured 90% of patients in a trial.

Solution: No one correct answer.
(b) Which treatment would you choose?

1. Treatment 1: cured 3 out of 3 patients in a trial.
2. Treatment 2: cured 19 out of 20 patients treated in a trial.
3. Standard treatment: cured 90000 out of 100000 patients in clinical practice.

Solution: No one correct answer.

Board questions

Problem 1. Learning from data

- A certain disease has a prevalence of 0.005 .
- A screening test has 2% false positives an 1% false negatives.

Suppose a random patient is screened and has a positive test.
(a) Represent this information with a tree and use Bayes' theorem to compute the probabilities the patient does and doesn't have the disease.
(b) Identify the data, hypotheses, likelihoods, prior probabilities and posterior probabilities.
(c) Make a full likelihood table containing all hypotheses and possible test data.
(d) Redo the computation using a Bayesian update table. Match the terms in your table to the terms in your previous calculation.

Solution: (a) Tree based Bayes computation

Let \mathcal{H}_{+}mean the patient has the disease and \mathcal{H}_{-}they don't.
Let \mathcal{T}_{+}: they test positive and \mathcal{T}_{-}they test negative.
We can organize this in a tree:

Bayes' theorem says $P\left(\mathcal{H}_{+} \mid \mathcal{T}_{+}\right)=\frac{P\left(\mathcal{T}_{+} \mid \mathcal{H}_{+}\right) P\left(\mathcal{H}_{+}\right)}{P\left(\mathcal{T}_{+}\right)}$.

Using the tree, the total probability

$$
\begin{aligned}
P\left(\mathcal{T}_{+}\right) & =P\left(\mathcal{T}_{+} \mid \mathcal{H}_{+}\right) P\left(\mathcal{H}_{+}\right)+P\left(\mathcal{T}_{+} \mid \mathcal{H}_{-}\right) P\left(\mathcal{H}_{-}\right) \\
& =0.99 \cdot 0.005+0.02 \cdot 0.995=0.02485
\end{aligned}
$$

So,

$$
\begin{aligned}
& P\left(\mathcal{H}_{+} \mid \mathcal{T}_{+}\right)=\frac{P\left(\mathcal{T}_{+} \mid \mathcal{H}_{+}\right) P\left(\mathcal{H}_{+}\right)}{P\left(\mathcal{T}_{+}\right)}=\frac{0.99 \cdot 0.005}{0.02485}=0.199 \\
& P\left(\mathcal{H}_{-} \mid \mathcal{T}_{+}\right)=\frac{P\left(\mathcal{T}_{+} \mid \mathcal{H}_{-}\right) P\left(\mathcal{H}_{-}\right)}{P\left(\mathcal{T}_{+}\right)}=\frac{0.02 \cdot 0.995}{0.02485}=0.801
\end{aligned}
$$

The positive test greatly increases the probability of \mathcal{H}_{+}, but it is still much less probable than \mathcal{H}_{-}.

(b) Terminology

Data: The data are the results of the experiment. In this case, the positive test.
Hypotheses: The hypotheses are the possible answers to the question being asked. In this case they are \mathcal{H}_{+}the patient has the disease; \mathcal{H}_{-}they don't.
Likelihoods: The likelihood given a hypothesis is the probability of the data given that hypothesis. In this case there are two likelihoods, one for each hypothesis

$$
P\left(\mathcal{T}_{+} \mid \mathcal{H}_{+}\right)=0.99 \quad \text { and } \quad P\left(\mathcal{T}_{+} \mid \mathcal{H}_{-}\right)=0.02 .
$$

We repeat: the likelihood is a probability given the hypothesis, not a probability of the hypothesis.

Prior probabilities of the hypotheses: The priors are the probabilities of the hypotheses prior to collecting data. In this case,

$$
P\left(\mathcal{H}_{+}\right)=0.005 \quad \text { and } \quad P\left(\mathcal{H}_{-}\right)=0.995
$$

Posterior probabilities of the hypotheses: The posteriors are the probabilities of the hypotheses given the data. In this case

$$
P\left(\mathcal{H}_{+} \mid \mathcal{T}_{+}\right)=0.199 \quad \text { and } \quad P\left(\mathcal{H}_{-} \mid \mathcal{T}_{+}\right)=0.801
$$

\[

\]

(c) Full likelihood table

The table holds likelihoods $P(\mathcal{D} \mid \mathcal{H})$ for every possible hypothesis and data combination.

hypothesis \mathcal{H}	likelihood $P(\mathcal{D} \mid \mathcal{H})$	
disease state	$P\left(\mathcal{T}_{+} \mid \mathcal{H}\right)$	$P\left(\mathcal{T}_{-} \mid \mathcal{H}\right)$
\mathcal{H}_{+}	0.99	0.01
\mathcal{H}_{-}	0.02	0.98

Notice in the table below that the $P\left(\mathcal{T}_{+} \mid \mathcal{H}\right)$ column is exactly the likelihood column in the Bayesian update table.
(d) Calculation using a Bayesian update table
$\mathcal{H}=$ hypothesis: \mathcal{H}_{+}(patient has disease); \mathcal{H}_{-}(they don't).
Data: \mathcal{T}_{+}(positive screening test).

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P\left(\mathcal{T}_{+} \mid \mathcal{H}\right)$	$P\left(\mathcal{T}_{+} \mid \mathcal{H}\right) P(\mathcal{H})$	$P\left(\mathcal{H} \mid \mathcal{T}_{+}\right)$
\mathcal{H}_{+}	0.005	0.99	0.00495	0.199
\mathcal{H}_{-}	0.995	0.02	0.0199	0.801
total	1	NO SUM	$P\left(\mathcal{T}_{+}\right)=0.02485$	1

Data $\mathcal{D}=\mathcal{T}_{+}$
Total probability: $P\left(\mathcal{T}_{+}\right)=$sum of Bayes numerator column $=0.02485$
Bayes' theorem: $P\left(\mathcal{H} \mid \mathcal{T}_{+}\right)=\frac{P\left(\mathcal{T}_{+} \mid \mathcal{H}\right) P(\mathcal{H})}{P\left(\mathcal{T}_{+}\right)}=\frac{\text { likelihood } \times \text { prior }}{\text { total prob. of data }}$

Problem 2. Dice

I have five dice: 4-sided, 6 -sided, 8 -sided, 12 -sided, 20 -sided.
I pick one at random, roll it and report that the roll was a 13.
Goal: Find the probabilities the die is 4, 6, 8, 12 or 20 sided.
(a) Identify the hypotheses.
(b) Make a likelihood table with columns for the data 'rolled a 13', 'rolled a 5' and 'rolled a 9',
(c) Make a Bayesian update table and compute the posterior probabilities that the chosen die is each of the five dice.
(d) Same question if I had reported a 5.
(e) Same question if I had reported a 9.

Solution: (a) The hypotheses are: \mathcal{H}_{4}, the chosen die was 4 -sided; \mathcal{H}_{6}, the chosen die was 6-sided; Likewise $\mathcal{H}_{8}, \mathcal{H}_{12}, \mathcal{H}_{20}$.
(b) The likelihoods for a roll of 5, 9 and 13 are

hypothesis \mathcal{H}	$P(5 \mid \mathcal{H})$	$P(9 \mid \mathcal{H})$	$P(13 \mid \mathcal{H})$
\mathcal{H}_{4}	0	0	0
\mathcal{H}_{6}	$1 / 6$	0	0
\mathcal{H}_{8}	$1 / 8$	$1 / 8$	0
\mathcal{H}_{12}	$1 / 12$	$1 / 12$	0
\mathcal{H}_{20}	$1 / 20$	$1 / 20$	$1 / 20$

(c) $\mathcal{D}=$ 'rolled a 13 '. So our likelihood column uses the $P(13 \mid \mathcal{H})$ from part (b).

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	0	0	0
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	1
total	1		$1 / 100$	1

The only possibility is the 20 -sided die.
(d) $\mathcal{D}=$ 'rolled a 5 '. So our likelihood column uses the $P(5 \mid \mathcal{H})$ from part (b).

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	$1 / 6$	$1 / 30$	0.392
\mathcal{H}_{8}	$1 / 5$	$1 / 8$	$1 / 40$	0.294
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.196
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.118
total	1		0.085	1

\mathcal{H}_{4} is impossible. The most probable hypothesis is \mathcal{H}_{6}.
(e) $\mathcal{D}=$ 'rolled a 9 '. So our likelihood column uses the $P(9 \mid \mathcal{H})$ from part (b).

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.625
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.375
total	1		0.0267	1

The most probable hypothesis is \mathcal{H}_{12}.

Problem 3. Iterated updates
Suppose I rolled a 9 and then a 5.
(a) Do the Bayesian update in two steps:

Step 1: First update for the 9.
Step 2: Then update the update for the 5.
(b) Do the Bayesian update in one step.

That is, the data is $\mathcal{D}=$ ' 9 followed by 5 '
Solution: (a) Tabular solution: two steps
$\mathcal{D}_{1}=$ 'rolled a 9 ', $\mathcal{D}_{2}=$ 'rolled a 5 '
Bayes numerator ${ }_{1}=$ likelihood $_{1} \times$ prior.
Bayes numerator ${ }_{2}=$ likelihood $_{2} \times$ Bayes numerator $_{1}$

hyp.	prior	likel. 1	Bayes num. 1	likel. 2		
$\mathcal{H}^{\text {numes }}$	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	$* * *$	$P\left(\mathcal{D}_{2} \mid \mathcal{H}\right)$	$* * *$	posterior
\mathcal{H}_{4}	$1 / 5$	0	0	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	$1 / 6$	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	$1 / 8$	0	0
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	$1 / 12$	$1 / 720$	0.735
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	$1 / 20$	$1 / 2000$	0.265
total	1				0.0019	1

(b) Tabular solution: one step
$\mathcal{D}=$ 'rolled a 9 then a 5 '

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	$1 / 144$	$1 / 720$	0.735
\mathcal{H}_{20}	$1 / 5$	$1 / 400$	$1 / 2000$	0.265
total	1		0.0019	1

Problem 4. Probabilistic prediction (Probably won't get here till next time)
With the same setup as before let:
$\mathcal{D}_{1}=$ result of first roll, $\quad \mathcal{D}_{2}=$ result of second roll
(a) Find $P\left(\mathcal{D}_{1}=5\right)$.
(b) Find $P\left(\mathcal{D}_{2}=4 \mid \mathcal{D}_{1}=5\right)$.

Solution: $\quad \mathcal{D}_{1}='$ rolled a $5 ', \quad \mathcal{D}_{2}='$ rolled a $4 '$

Bayes						
hyp. prior	likel. 1	num. 1	post. 1	likel. 2	post. $1 \times$ likel. 2	
\mathcal{H}	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	$* * *$	$P\left(\mathcal{H} \mid \mathcal{D}_{1}\right)$	$P\left(\mathcal{D}_{2} \mid \mathcal{H}, \mathcal{D}_{1}\right) P\left(\mathcal{D}_{2} \mid \mathcal{H}, \mathcal{D}_{1}\right) P\left(\mathcal{H} \mid \mathcal{D}_{1}\right)$	
\mathcal{H}_{4}	$1 / 5$	0	0	0	$*$	0
\mathcal{H}_{6}	$1 / 5$	$1 / 6$	$1 / 30$	0.392	$1 / 6$	$0.392 \cdot 1 / 6$
\mathcal{H}_{8}	$1 / 5$	$1 / 8$	$1 / 40$	0.294	$1 / 8$	$0.294 \cdot 1 / 40$
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.196	$1 / 12$	$0.196 \cdot 1 / 12$
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.118	$1 / 20$	$0.118 \cdot 1 / 20$
total	1		0.085	1		0.124

The law of total probability tells us $P\left(\mathcal{D}_{1}\right)$ is the sum of the Bayes numerator 1 column in the table: $P\left(\mathcal{D}_{1}\right)=0.085$.
The law of total probability tells us $P\left(\mathcal{D}_{2} \mid \mathcal{D}_{1}\right)$ is the sum of the last column in the table:
$P\left(\mathcal{D}_{2} \mid \mathcal{D}_{1}\right)=0.124$ Solution: $\quad \mathcal{D}_{1}=$ 'rolled a $5 ', \quad \mathcal{D}_{2}=$ 'rolled a $4 '$

Bayes						
hyp. prior	likel. 1	num. 1	post. 1	likel. 2	post. $1 \times$ likel. 2	
\mathcal{H}^{2}	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	$* * *$	$P\left(\mathcal{H} \mid \mathcal{D}_{1}\right)$	$P\left(\mathcal{D}_{2} \mid \mathcal{H}, \mathcal{D}_{1}\right) P\left(\mathcal{D}_{2} \mid \mathcal{H}, \mathcal{D}_{1}\right) P\left(\mathcal{H} \mid \mathcal{D}_{1}\right)$	
\mathcal{H}_{4}	$1 / 5$	0	0	0	$*$	0
\mathcal{H}_{6}	$1 / 5$	$1 / 6$	$1 / 30$	0.392	$1 / 6$	$0.392 \cdot 1 / 6$
\mathcal{H}_{8}	$1 / 5$	$1 / 8$	$1 / 40$	0.294	$1 / 8$	$0.294 \cdot 1 / 40$
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.196	$1 / 12$	$0.196 \cdot 1 / 12$
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.118	$1 / 20$	$0.118 \cdot 1 / 20$
total	1		0.085	1		0.124

The law of total probability tells us $P\left(\mathcal{D}_{1}\right)$ is the sum of the Bayes numerator 1 column in the table: $P\left(\mathcal{D}_{1}\right)=0.085$.
The law of total probability tells us $P\left(\mathcal{D}_{2} \mid \mathcal{D}_{1}\right)$ is the sum of the last column in the table: $P\left(\mathcal{D}_{2} \mid \mathcal{D}_{1}\right)=0.124$

Extra problems

Extra 1. Bayesian updating: terminology, trees, tables
I have a bag with one 4-sided die and 9996 -sided dice. I pick one at random and roll it. Suppose I get a 3.
Goal: find the probabilities the chosen die was 4-sided or 6 -sided.
(a) Identify the hypotheses.
(b) Use Bayes' theorem to compute the posterior probabilities. Organize the computation using trees.
(c) Connect all the Bayesian updating terminology with the parts of the computation.
(d) Redo the computation using a Bayesian updating table.

Solution: (a) The hypotheses are: \mathcal{H}_{4}, the chosen die was 4 -sided and \mathcal{H}_{6}, the chosen die was 4-sided;
(b) Let R be the value of the roll. Here is the probability tree:

Bayes' theorem says $P\left(\mathcal{H}_{4} \mid R=3\right)=\frac{P\left(R=3 \mid \mathcal{H}_{4}\right) P\left(\mathcal{H}_{4}\right)}{P(R=3)}$. Likewise for \mathcal{H}_{6}
Using the tree, the total probability of $R=3$.

$$
P(R=3)=P\left(R=3 \mid \mathcal{H}_{4}\right) P\left(\mathcal{H}_{4}\right)+P\left(R=3 \mid \mathcal{H}_{6}\right) P\left(\mathcal{H}_{6}\right)=1 / 4000+999 / 6000=0.167
$$

So,

$$
\begin{aligned}
& P\left(\mathcal{H}_{4} \mid R=3\right)=\frac{P\left(R=3 \mid \mathcal{H}_{4}\right) P\left(\mathcal{H}_{4}\right)}{P(R=3)}=\frac{1 / 4000}{0.167} \approx 0.0015 \\
& P\left(\mathcal{H}_{6} \mid R=3\right)=\frac{P\left(R=3 \mid \mathcal{H}_{6}\right) P\left(\mathcal{H}_{6}\right)}{P(R=3)}=\frac{999 / 6000}{0.167} \approx 0.9985
\end{aligned}
$$

The roll of 3 increases the probability of \mathcal{H}_{4}, but it is still much less probable than \mathcal{H}_{6}.

(c) Terminology

Data: The data are the results of the experiment. In this case, $R=3$.
Hypotheses: The hypotheses are the possible answers to the question being asked. In this case they are \mathcal{H}_{4} the die is 4 -sided and \mathcal{H}_{6} the die is 6 -sided.
Likelihoods: The likelihood given a hypothesis is the probability of the data given that hypothesis. In this case there are two likelihoods, one for each hypothesis

$$
P\left(R=3 \mid \mathcal{H}_{4}\right)=1 / 4 \quad \text { and } \quad P\left(R=3 \mid \mathcal{H}_{6}\right)=1 / 6 .
$$

We repeat: the likelihood is a probability given the hypothesis, not a probability of the hypothesis.
Prior probabilities of the hypotheses: The priors are the probabilities of the hypotheses prior to collecting data. In this case,

$$
P\left(\mathcal{H}_{4}\right)=1 / 1000 \quad \text { and } \quad P\left(\mathcal{H}_{6}\right)=999 / 1000 .
$$

Posterior probabilities of the hypotheses: The posteriors are the probabilities of the hypotheses given the data. In this case

$$
P\left(\mathcal{H}_{4} \mid R=3\right) \approx 0.0015 \quad \text { and } \quad P\left(\mathcal{H}_{6} \mid R=3\right) \approx 0.9985 \text {. (Computed below.) }
$$

(d) Calculation using a Bayesian update table

$\mathcal{H}=$ hypothesis: \mathcal{H}_{4} (4 -sided die); \mathcal{H}_{6} (6 -sided die) .
Data: $R=3$ (roll of 3).

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(R=3 \mid \mathcal{H})$	$P(R=3 \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid R=3)$
\mathcal{H}_{4}	$1 / 1000$	$1 / 4$	$1 / 4000$	$\frac{1 / 4000}{0.167} \approx 0.0015$
\mathcal{H}_{6}	$999 / 1000$	$1 / 6$	$999 / 6000$	$\frac{999 / 6000}{0.167} \approx 0.9985$
total	1	NO SUM	$P(R=3)=0.167$	1

The Total probability of the data is $P(R=3)=$ sum of Bayes numerator column $=0.167$.
Bayes' theorem: $P(\mathcal{H} \mid R=3)=\frac{P(R=3 \mid \mathcal{H}) P(\mathcal{H})}{P(R=3)}=\frac{\text { likelihood } \times \text { prior }}{\text { total prob. of data }}$
The posterior probabilities are identical to those from the tree based calculation.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

