
Continuous Data with Continuous Priors 
Class 14, 18.05 

Jeremy Orloff and Jonathan Bloom 

This reading is not assigned. It goes into a little more detail on Bayesian updating where 
both hypotheses and data are continuous. 

1 Learning Goals 

1. Be able to construct a Bayesian update table for continuous hypotheses and continuous 
data. 

2. Be able to recognize the pdf of a normal distribution and determine its mean and variance. 

2 Introduction 

We are now ready to do Bayesian updating when both the hypotheses and the data take 
continuous values. The pattern is the same as what we’ve done before, so let’s first review 
the previous two cases. 

3 Previous cases 

1. Discrete hypotheses, discrete data 

Notation 

• Hypotheses ℋ 

• Data 𝑥 

• Prior 𝑃 (ℋ) 

• Likelihood 𝑝(𝑥 | ℋ) 

• Posterior 𝑃 (ℋ | 𝑥). 

Example 1. Suppose we have data 𝑥 and three possible explanations (hypotheses) for the 
data that we’ll call 𝐴, 𝐵, 𝐶. Suppose also that the data can take two possible values, -1 
and 1. 
In order to use the data to help estimate the probabilities of the different hypotheses we 
need a prior pmf and a likelihood table. Assume the prior and likelihoods are given in 
the following table. (For this example we are only concerned with the formal process of 
Bayesian updating. So we just made up the prior and likelihoods.) 
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Prior probabilities 

Naturally, each entry in the likelihood table is a likelihood 𝑝(𝑥 | ℋ). For instance the 0.2 
row 𝐴 and column 𝑥 = −1 is the likelihood 𝑝(𝑥 = −1 | 𝐴). 

Question: Suppose we run one trial and obtain the data 𝑥1 = 1. Use this to find the 
posterior probabilities for the hypotheses. 
Solution: The data picks out one column from the likelihood table which we then use in 
our Bayesian update table. 

hypothesis 
ℋ 

prior
𝑃 (ℋ) 

A 
B 
C 

0.1 
0.3 
0.6 

hypothesis likelihood 𝑝(𝑥 | ℋ)
ℋ 𝑥 = −1 𝑥 = 1 
A 0.2 0.8 
B 0.5 0.5 
C 0.7 0.3 

Likelihoods 

hypothesis prior likelihood 
Bayes 

numerator posterior 

ℋ 𝑃 (ℋ) 𝑝(𝑥 = 1 | ℋ) 𝑝(𝑥 | ℋ)𝑃 (ℋ) 
𝑝(𝑥 | ℋ)𝑃 (ℋ)𝑃 (ℋ | 𝑥) = 𝑝(𝑥) 

𝐴 
𝐵 
𝐶 

0.1 
0.3 
0.6 

0.8 
0.5 
0.3 

0.08 
0.15 
0.18 

0.195 
0.366 
0.439 

total 1 no sum 𝑝(𝑥) = 0.41 1 

To summarize: the prior probabilities of hypotheses and the likelihoods of data given hy-
pothesis were given; the Bayes numerator is the product of the prior and likelihood; the 
total probability 𝑝(𝑥) is the sum of the probabilities in the Bayes numerator column; and 
we divide by 𝑝(𝑥) to normalize the Bayes numerator. 
Note: As usual, the term ‘no sum’ in the likelihood column is not literally true. What it 
means is that the sum is not meaningful to us. In particular, we don’t expect the likelihood 
column to sum to 1. 

2. Continuous hypotheses, discrete data 

Now suppose that we have data 𝑥 that can take a discrete set of values and a continuous 
parameter 𝜃 that determines the distribution the data is drawn from. 
Notation 

• Hypotheses 𝜃 

• Data 𝑥 

• Prior 𝑓(𝜃) 𝑑𝜃 

• Likelihood 𝑝(𝑥 | 𝜃) 

• Posterior 𝑓(𝜃 | 𝑥) 𝑑𝜃. 
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Note: Here we multiplied by 𝑑𝜃 to express the prior and posterior as probabilities. As 
densities, we have the prior pdf 𝑓(𝜃) and the posterior pdf 𝑓(𝜃 | 𝑥). 
Example 2. Assume that 𝑥 ∼ Binomial(5, 𝜃). So 𝜃 is in the range [0, 1] and the data 𝑥 
can take six possible values, 0, 1, …, 5. 
Since there is a continuous range of values we use a pdf to describe the prior on 𝜃. Let’s 
suppose the prior is 𝑓(𝜃) = 2𝜃. We can still make a likelihood table, though it only has one 
row representing an arbitrary hypothesis 𝜃. 

hypothesis likelihood 𝑝(𝑥 | 𝜃) 

𝑥 = 0 𝑥 = 1 𝑥 = 2 𝑥 = 3 𝑥 = 4 𝑥 = 5 

𝜃 (5
0)(1 − 𝜃)5 (5

1)𝜃(1 − 𝜃)4 (5
2)𝜃2(1 − 𝜃)3 (5

3)𝜃3(1 − 𝜃)2 (5
4)𝜃4(1 − 𝜃) (5

5)𝜃5 

Likelihoods 

Question: Suppose we run one trial and obtain the data 𝑥 = 2. Use this to find the 
posterior pdf for the parameter (hypotheses) 𝜃. 
Solution: As before, the data picks out one column from the likelihood table which we 
can use in our Bayesian update table. Since we want to work with probabilities we write
𝑓(𝜃)𝑑 𝜃 and 𝑓(𝜃 | 𝑥) 𝑑𝜃 for the pdfs. 

hypothesis prior likelihood 
(for 𝑥 = 2) 

Bayes 
numerator 

posterior 

𝜃 𝑓(𝜃) 𝑑𝜃 𝑝(𝑥 | 𝜃) 𝑝(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 
𝑝(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃𝑓(𝜃 | 𝑥) 𝑑𝜃 = 𝑝(𝑥) 

𝜃 2𝜃 𝑑𝜃 (5
2)𝜃2(1 − 𝜃)3 2(5

2)𝜃3(1 − 𝜃)3 𝑑𝜃 
7!𝑓(𝜃 | 𝑥) 𝑑𝜃 = 3! 3! 𝜃

3(1 − 𝜃)3 𝑑𝜃 

total 1 no sum 
= ∫1𝑝(𝑥) 0 

2(5
2)𝜃3(1 − 𝜃)3 𝑑𝜃 

2)3! 3!= 2(5
7! 

1 

To summarize: the prior probabilities of hypotheses and the likelihoods of data given hy-
pothesis were given; the Bayes numerator is the product of the prior and likelihood; the 
total probability 𝑝(𝑥) is the integral of the probabilities in the Bayes numerator column; 
and we divide by 𝑝(𝑥) to normalize the Bayes numerator. 

4 Continuous hypotheses and continuous data 

When both data and hypotheses are continuous, the only change to the previous example is 
that the likelihood function uses a pdf 𝜙(𝑥 | 𝜃) instead of a pmf 𝑝(𝑥 | 𝜃). The general shape 
of the Bayesian update table is the same. 
Notation 
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• Hypotheses 𝜃. For continuous hypotheses, this really means that we hypothesize that 
the parameter is in a small interval of size 𝑑𝜃 around 𝜃. 

• Data 𝑥. For continuous data, this really means that the data is in a small interval of 
size 𝑑𝑥 around 𝑥. 

• Prior 𝑓(𝜃)𝑑𝜃. This is our initial belief about the probability that the parameter is in 
a small interval of size 𝑑𝜃 around 𝜃. 

• Likelihood 𝜙(𝑥 | 𝜃) 𝑑𝑥. This is the (calculated) probability that the data is in a small 
interval of size 𝑑𝑥 around 𝑥, ASSUMING the hypothesis 𝜃. 

• Posterior 𝑓(𝜃 | 𝑥) 𝑑𝜃. This is the (calculated) probability that the parameter is in a 
small interval of size 𝑑𝜃 around 𝜃, GIVEN the data 𝑥. 

Simplifying the notation. In the previous cases we included 𝑑𝜃 so that we were working 
with probabilities instead of densities. When both data and hypotheses are continuous 
we will need both 𝑑𝜃 and 𝑑𝑥. This makes things conceptually simpler, but notationally 
cumbersome. To simplify the notation we will sometimes allow ourselves to drop 𝑑𝑥 in our 
tables. This is fine because the data 𝑥 is fixed in each calculation. We keep the 𝑑𝜃 because 
the hypothesis 𝜃 is allowed to vary. 
For comparison, we first show the general table in simplified notation followed immediately 
afterward by the table showing both infinitesimals. 

hypoth. prior likelihood 

Bayes 

numerator posterior 

𝜃 𝑓(𝜃) 𝑑𝜃 𝜙(𝑥 | 𝜃) 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 
𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃𝑓(𝜃 | 𝑥) 𝑑𝜃 = 𝜙(𝑥) 

total 
(integrate over 𝜃) 

1 no sum 𝜙(𝑥) = ∫ 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 

= prior prob. density for data 𝑥 

1 

Bayesian update table without 𝑑𝑥 

hypoth. prior likelihood 
Bayes 

numerator posterior 

𝜃 𝑓(𝜃) 𝑑𝜃 𝜙(𝑥 | 𝜃) 𝑑𝑥 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 𝑑𝑥 
𝑓(𝜃 | 𝑥) 𝑑𝜃 

𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 𝑑𝑥= 𝜙(𝑥) 𝑑𝑥 

= 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃
𝜙(𝑥) 

total 1 no sum 𝜙(𝑥) 𝑑𝑥 = (∫ 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃) 𝑑𝑥 1 

Bayesian update table with 𝑑𝜃 and 𝑑𝑥 

To summarize: the prior probabilities of hypotheses and the likelihoods of data given hy-
pothesis were given; the Bayes numerator is the product of the prior and likelihood; the 
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total probability 𝜙(𝑥) 𝑑𝑥 is the integral of the probabilities in the Bayes numerator column; 
we divide by 𝜙(𝑥) 𝑑𝑥 to normalize the Bayes numerator. 

5 A digression on notational messes 

We have chosen to use the notation 𝜙(𝑥), 𝜙(𝑥 | 𝜃) for the pdfs of data and 𝑓(𝜃), 𝑓(𝜃 | 𝑥) for 
the pdfs of hypotheses. This is nice because 𝜙 is a Greek 𝑓 , but the different symbols help 
us distinguish the two types of pdfs. Many, perhaps most, writers use the same letter 𝑓 for 
both. This forces the reader to look at the arguments to the function to understand what 
is meant. That is, 𝑓(𝑥|𝜃) is the probability of data given an hypothesis, i.e. the likelihood 
and 𝑓(𝜃|𝑥) is the probability of an hypothesis given the data, i.e. the posterior pdf. 
As mathematicians this makes us pull our hair out. But, to be fair, there is a philosoph-
ical underpinning to this notation. We can think of 𝑓 as a universal probability density 
which gives the probability of absolutely any combination of things. Thus 𝑓(𝑥, 𝑦) is the 
joint probability density for the quantities denoted by 𝑥 and 𝑦. If we just write 𝑓(𝑥) the 
implication is that this means the marginal density for 𝑥, i.e. the density for 𝑥 when 𝑦 is 
allowed to take any value. Similarly we can write 𝑓(𝑥, 𝑦|𝑧) for the conditional density of 𝑥 
and 𝑦 given 𝑧. 

6 Normal hypothesis, normal data 

A standard example of continuous hypotheses and continuous data assumes that both the 
data and prior follow normal distributions. The following example assumes that the variance 
of the data is known. 

Example 3. Suppose we have data 𝑥 = 5 which was drawn from a normal distribution 
with unknown mean 𝜃 and standard deviation 1. 

𝑥 ∼ N(𝜃, 1) 

Suppose further, that our prior distribution for the unknown parameter 𝜃 is 𝜃 ∼ N(2, 1). 
Let 𝑥 represent an arbitrary data value. 
(a) Make a Bayesian table with prior, likelihood, and Bayes numerator. 
(b) Show that the posterior distribution for 𝜃 is normal as well. 
(c) Find the mean and variance of the posterior distribution. 
Solution: As we did with the tables above, a good compromise on the notation is to include 
𝑑𝜃 but not 𝑑𝑥. The reason for this is that the total probability is computed by integrating 
over 𝜃 and the 𝑑𝜃 reminds of us that. 
Our prior pdf is 

𝑓(𝜃) = √1
2𝜋 

e−(𝜃−2)2/2. 

The likelihood function is 

𝜙(𝑥 = 5 | 𝜃) = √1
2𝜋 

e−(5−𝜃)2/2. 
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We know we are going to multiply the prior and the likelihood, so we carry out that algebra 
first. In the very last step we give the complicated constant factor the name 𝑐1. 

√1
2𝜋 

e−(𝜃−2)2/2 √1
2𝜋 

e−(5−𝜃)2/2prior ⋅ likelihood = ⋅ 

2𝜋
1 e−(2𝜃2−14𝜃+29)/2= 

2𝜋
1 e−(𝜃2−7𝜃+29/2) = (complete the square) 

2𝜋
1 e−((𝜃−7/2)2+9/4)= 

= 
e−9/4 

e−(𝜃−7/2)2)
2𝜋 

= 𝑐1e−(𝜃−7/2)2 

In the last step we named the complicated constant factor 𝑐1. 

hypothesis prior likelihood 
Bayes 

numerator 
posterior 

𝑓(𝜃 | 𝑥 = 5) 𝑑𝜃 

𝜃 𝑓(𝜃) 𝑑𝜃 𝜙(𝑥 = 5 | 𝜃) 𝜙(𝑥 = 5 | 𝜃)𝑓(𝜃) 𝑑𝜃 
𝜙(𝑥 = 5 | 𝜃)𝑓(𝜃) 𝑑𝜃 

𝜙(𝑥 = 5) 

𝜃 √1
2𝜋 

e−(𝜃−2)2/2 𝑑𝜃 √1
2𝜋 

e−(5−𝜃)2/2 𝑐1e−(𝜃−7/2)2 𝑐2e−(𝜃−7/2)2 

total 1 no sum 𝜙(𝑥 = 5) = ∫ 𝜙(𝑥 = 5 | 𝜃)𝑓(𝜃) 𝑑𝜃 1 

We can see by the form of the posterior pdf that it is a normal distribution. Because the 
exponential for a normal distribution is e−(𝜃−𝜇)2/2𝜎2 we have mean 𝜇 = 7/2 and 2𝜎2 = 1, so 
variance 𝜎2 = 1/2. 
We don’t need to bother computing the total probability; it is just used for normalization 

and we already know the normalization constant 𝜎
√1

2𝜋 
for a normal distribution. To 

summarize, 
The posterior pdf follows a N(7/2, 1/2) distribution. 

Here is the graph of the prior and the posterior pdfs for this example. Note how the data 
‘pulls’ the prior (the wider bell on the left) towards the data. The posterior is the narrower 
bell on the right. After collecting data, we have a new opinion about the mean, and we are 
more sure of this new opinion. 
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Now we’ll repeat the previous example for general 𝑥. When reading this if you mentally 
substitute 5 for 𝑥 you will understand the algebra. 
Example 4. Suppose our data 𝑥 is drawn from a normal distribution with unknown mean
𝜃 and standard deviation 1. 

𝑥 ∼ N(𝜃, 1) 

Suppose further, that our prior distribution for the unknown parameter 𝜃 is 𝜃 ∼ N(2, 1). 
Solution: As before, we show the algebra used to simplify the Bayes numerator: The prior 
pdf and likelihood function are 

𝑓(𝜃) = √1
2𝜋 

e−(𝜃−2)2/2 𝑓(𝑥 | 𝜃) = √1
2𝜋 

e−(𝑥−𝜃)2/2. 

The Bayes numerator is the product of the prior and the likelihood: 

prior ⋅ likelihood = √1
2𝜋 

e−(𝜃−2)2/2 ⋅ √1
2𝜋 

e−(𝑥−𝜃)2/2 

2𝜋
1 e−(2𝜃2−(4+2𝑥)𝜃+4+𝑥2)/2= 

= 2𝜋
1 e−(𝜃2−(2+𝑥)𝜃+(4+𝑥2)/2) (complete the square) 

2𝜋
1 e−((𝜃−(1+𝑥/2))2−(1+𝑥/2)2+(4+𝑥2)/2)= 

= 𝑐1e−(𝜃−(1+𝑥/2))2 

Just as in the previous example, in the last step we replaced all the constants, including 
the exponentials that just involve 𝑥, by by the simple constant 𝑐1. 

Now the Bayesian update table becomes 
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hypothesis prior likelihood 
Bayes 

numerator 
posterior 
𝑓(𝜃 | 𝑥) 𝑑𝜃 

𝜃 𝑓(𝜃) 𝑑𝜃 𝜙(𝑥 | 𝜃) 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 
𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃

𝜙(𝑥) 

𝜃 √1
2𝜋 

e−(𝜃−2)2/2 𝑑𝜃 √1
2𝜋 

e−(𝑥−𝜃)2/2 𝑐1e−(𝜃−(1+𝑥/2))2 𝑐2e−(𝜃−(1+𝑥/2))2 

𝜃 𝜃 ∼ N(2, 1) 𝑥 ∼ N(𝜃, 1) 𝜃 ∼ N(1 + 𝑥/2, 1/2) 

total 1 no sum 𝜙(𝑥) = ∫ 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 1 

As in the previous example we can see by the form of the posterior that it must be a normal 
distribution with mean 1 + 𝑥/2 and variance 1/2. That is, 

The posterior pdf follows a N(1 + 𝑥/2, 1/2) distribution. 
You should compare this with the case 𝑥 = 5 in the previous example. 

7 Predictive probabilities 

Since the data 𝑥 is continuous it has prior and posterior predictive pdfs. The prior predictive 
pdf is the total probability density computed at the bottom of the Bayes numerator column: 

𝜙(𝑥) = ∫ 𝑓(𝑥|𝜃)𝑓(𝜃) 𝑑𝜃, 

where the integral is computed over the entire range of 𝜃. 
The posterior predictive pdf has the same form as the prior predictive pdf, except it uses 
the posterior probabilities for 𝜃: 

𝜙(𝑥2|𝑥1) = ∫ 𝜙(𝑥2|𝜃, 𝑥1)𝑓(𝜃|𝑥1) 𝑑𝜃, 

We usually assume that 𝑥1 and 𝑥2 are conditionally independent. That is, 

𝜙(𝑥2|𝜃, 𝑥1) = 𝜙(𝑥2|𝜃). 

In this case the formula for the posterior predictive pdf is a little simpler: 

𝜙(𝑥2|𝑥1) = ∫ 𝜙(𝑥2|𝜃)𝑓(𝜃|𝑥1) 𝑑𝜃. 
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