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1 Learning Goals 

1. Be familiar with the 2-parameter family of beta distributions and its normalization. 

2. Understand the benefits of conjugate priors. 

3. Be able to update a beta prior given a Bernoulli, binomial, or geometric likelihood. 

4. Understand and be able to use the formula for updating a normal prior given a normal 
likelihood with known variance. 

2 Introduction 

Our main goal here is to introduce the idea of conjugate priors and look at some specific 
conjugate pairs. These simplify the job of Bayesian updating to simple arithmetic. We’ll 
start by introducing the beta distribution and using it as a conjugate prior with a binomial 
likelihood. After that we’ll look at other conjugate pairs. 

3 Beta distribution 

The beta distribution Beta(𝑎, 𝑏) is a two-parameter distribution with range [0, 1] and pdf 
(𝑎 + 𝑏 − 1)! 𝑓(𝜃) = (𝑎 − 1)!(𝑏 − 1)!𝜃

𝑎−1(1 − 𝜃)𝑏−1 

We have made an applet so you can explore the shape of the beta distribution as you vary 
the parameters: 
https://mathlets.org/mathlets/beta-distribution/. 
As you can see in the applet, the beta distribution may be defined for any real numbers 
𝑎 > 0 and 𝑏 > 0. In 18.05 we will stick to integers 𝑎 and 𝑏, but you can get the full story 
here: https://en.wikipedia.org/wiki/Beta_distribution 

In the context of Bayesian updating, 𝑎 and 𝑏 are often called hyperparameters to distinguish 
them from the unknown parameter 𝜃 representing our hypotheses. In a sense, 𝑎 and 𝑏 are 
‘one level up’ from 𝜃 since they parameterize its pdf. 

3.1 A simple but important observation! 

If a pdf 𝑓(𝜃) with range [0, 1] has the form 𝑐𝜃𝑎−1(1 − 𝜃)𝑏−1 then 𝑓(𝜃) is a Beta(𝑎, 𝑏) distri-
bution and the normalizing constant must be 

(𝑎 + 𝑏 − 1)! 𝑐 = (𝑎 − 1)! (𝑏 − 1)! . 

1 

https://mathlets.org/mathlets/beta-distribution/
https://en.wikipedia.org/wiki/Beta_distribution
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This follows because the constant 𝑐 must normalize the pdf to have total probability 1. 
There is only one such constant and it is given in the formula for the beta distribution. 
A similar observation holds for normal distributions, exponential distributions, and so on. 

3.2 Beta priors and posteriors for binomial random variables 

Example 1. Suppose we have a bent coin with unknown probability 𝜃 of heads. We toss 
it 12 times and get 8 heads and 4 tails. Starting with a flat prior, show that the posterior 
pdf is a Beta(9, 5) distribution. 
Solution: This is nearly identical to examples from the previous class. We’ll call the data 
from all 12 tosses 𝑥1. In the following table we call the leading constant factor in the 
posterior column 𝑐2. Our simple observation will tell us that it has to be the constant 
factor from the beta pdf. 
The data is 8 heads and 4 tails. Since this comes from a binomial(12, 𝜃) distribution, the 

likelihood 𝑝(𝑥1|𝜃) = (12
8 

)𝜃8(1 − 𝜃)4. Thus the Bayesian update table is 

hypothesis prior likelihood 
Bayes 

numerator posterior 

𝜃 1 ⋅ 𝑑𝜃 (12
8 ) 𝜃8(1 − 𝜃)4 (12

8 ) 𝜃8(1 − 𝜃)4 𝑑𝜃 𝑐2 𝜃8(1 − 𝜃)4 𝑑𝜃 

total 1 
1 

= (12𝑇 8 
) ∫ 𝜃8(1 − 𝜃)4 𝑑𝜃 

0 

1 

For the posterior pdf, our simple observation holds with 𝑎 = 9 and 𝑏 = 5. Therefore the 
posterior pdf follows a Beta(9, 5) distribution and we have 

13!𝑓(𝜃|𝑥1) = 𝑐2𝜃8(1 − 𝜃)4, where 𝑐2 = 8! 4! . 

Note: We explicitly included the binomial coefficient (12
8 ) in the likelihood. We could just 

as easily have given it a name, say 𝑐1 and not bothered making its value explicit. 

Example 2. Now suppose we toss the same coin again, getting 𝑛 heads and 𝑚 tails. Using 
the posterior pdf of the previous example as our new prior pdf, show that the new posterior 
pdf is that of a Beta(9 + 𝑛, 5 + 𝑚) distribution. 
Solution: It’s all in the table. We’ll call the data of these 𝑛 + 𝑚 additional tosses 𝑥2. This 
time we won’t make the binomial coefficient explicit. Instead we’ll just call it 𝑐3. Whenever 
we need a new label we will simply use 𝑐 with a new subscript. 

Bayes 
hyp. prior likelihood numerator posterior 

𝜃 𝑐2𝜃8(1 − 𝜃)4 𝑑𝜃 𝑐3 𝜃𝑛(1 − 𝜃)𝑚 𝑐2𝑐3 𝜃𝑛+8(1 − 𝜃)𝑚+4 𝑑𝜃 𝑐4 𝜃𝑛+8(1 − 𝜃)𝑚+4 𝑑𝜃 

total 1 
1

𝑇 = ∫ 𝑐2𝑐3 𝜃𝑛+8(1 − 𝜃)𝑚+4 𝑑𝜃 
0 

1 

Again our simple observation holds and therefore the posterior pdf 
𝑓(𝜃|𝑥1, 𝑥2) = 𝑐4𝜃𝑛+8(1 − 𝜃)𝑚+4 
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follows a Beta(𝑛 + 9, 𝑚 + 5) distribution. 
Note: Flat beta. The Beta(1, 1) distribution is the same as the uniform distribution on
[0, 1], which we have also called the flat prior on 𝜃. This follows by plugging 𝑎 = 1 and
𝑏 = 1 into the definition of the beta distribution, giving 𝑓(𝜃) = 1. 
Summary: If the probability of heads is 𝜃, the number of heads in 𝑛 + 𝑚 tosses follows a 
binomial(𝑛 + 𝑚, 𝜃) distribution. We have seen that if the prior on 𝜃 is a beta distribution 
then so is the posterior; only the parameters 𝑎, 𝑏 of the beta distribution change! We 
summarize precisely how they change in a table. We assume the data is 𝑛 heads and 𝑚 
tails in 𝑛 + 𝑚 tosses. 

hypothesis data prior likelihood posterior 

𝜃 𝑥 = 𝑛, 𝑚 Beta(𝑎, 𝑏) binomial(𝑛 + 𝑚, 𝜃) Beta(𝑎 + 𝑛, 𝑏 + 𝑚) 

𝜃 𝑥 = 𝑛, 𝑚 𝑐1𝜃𝑎−1(1 − 𝜃)𝑏−1 𝑑𝜃 𝑐2𝜃𝑛(1 − 𝜃)𝑚 𝑐3𝜃𝑎+𝑛−1(1 − 𝜃)𝑏+𝑚−1 𝑑𝜃 

4 Conjugate priors 

The beta distribution is called a conjugate prior for the binomial distribution. This means 
that if the likelihood function is binomial, then a beta prior gives a beta posterior –this is 
what we saw in the previous examples. In fact, the beta distribution is a conjugate prior 
for the Bernoulli and geometric distributions as well. 
We will soon see another important example: the normal distribution is its own conjugate 
prior. In particular, if the likelihood function is normal with known variance, then a normal 
prior gives a normal posterior. 
Conjugate priors are useful because they reduce Bayesian updating to modifying the param-
eters of the prior distribution (so-called hyperparameters) rather than computing integrals. 
We saw this for the beta distribution in the last table. For many more examples see: 
https://en.wikipedia.org/wiki/Conjugate_prior_distribution 

We now give a definition of conjugate prior. It is best understood through the examples in 
the subsequent sections. 
Definition. Suppose we have data with likelihood function 𝜙(𝑥|𝜃) depending on a hy-
pothesized parameter 𝜃. Also suppose the prior distribution for 𝜃 is one of a family of 
parametrized distributions. If the posterior distribution for 𝜃 is in this family then we say 
the the family of priors are conjugate priors for the likelihood. 
This definition will be illustrated with specific examples in the sections below. 

5 Beta priors 

In this section, we will show that the beta distribution is a conjugate prior for binomial, 
Bernoulli, and geometric likelihoods. 

https://en.wikipedia.org/wiki/Conjugate_prior_distribution
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5.1 Binomial likelihood 

We saw above that the beta distribution is a conjugate prior for the binomial distribution. 
This means that if the likelihood function is binomial and the prior distribution is beta then 
the posterior is also beta. 
More specifically, suppose that the likelihood follows a binomial(𝑁, 𝜃) distribution where 𝑁 
is known and 𝜃 is the (unknown) parameter of interest. We also have that the data 𝑥 from 
one trial is an integer between 0 and 𝑁 . Then for a beta prior we have the following table: 
hypoth. data prior likelihood posterior 

𝜃 𝑥 
Beta(𝑎, 𝑏) 

𝑓(𝜃) = 𝑐1𝜃𝑎−1(1 − 𝜃)𝑏−1 
binomial(𝑁, 𝜃) 

𝑝(𝑥|𝜃) = 𝑐2𝜃𝑥(1 − 𝜃)𝑁−𝑥 
Beta(𝑎 + 𝑥, 𝑏 + 𝑁 − 𝑥) 

𝑓(𝜃|𝑥) = 𝑐3𝜃𝑎+𝑥−1(1 − 𝜃)𝑏+𝑁−𝑥−1 

The table is simplified by writing the normalizing coefficients as 𝑐1, 𝑐2 and 𝑐3 respectively. 
If needed, we can recover the values of the 𝑐1 and 𝑐2 by recalling (or looking up) the 
normalizations of the beta and binomial distributions. 

(𝑎 + 𝑏 − 1)! = (𝑁 𝑁! (𝑎 + 𝑏 + 𝑁 − 1)! 𝑐1 = 𝑐2 𝑐3 =(𝑎 − 1)! (𝑏 − 1)! 𝑥 ) = 𝑥! (𝑁 − 𝑥)! (𝑎 + 𝑥 − 1)! (𝑏 + 𝑁 − 𝑥 − 1)! 

5.2 Bernoulli likelihood 

The beta distribution is a conjugate prior for the Bernoulli distribution. This is actually 
a special case of the binomial distribution, since Bernoulli(𝜃) is the same as binomial(1,
𝜃). We do it separately because it is slightly simpler and of special importance. In the 
table below, we show the updates corresponding to success (𝑥 = 1) and failure (𝑥 = 0) on 
separate rows. 

hypothesis data prior likelihood posterior 
𝜃 𝑥 Beta(𝑎, 𝑏) Bernoulli(𝜃) Beta(𝑎 + 1, 𝑏) or Beta(𝑎, 𝑏 + 1)
𝜃 𝑥 = 1 𝑓(𝜃) = 𝑐1𝜃𝑎−1(1 − 𝜃)𝑏−1 𝑝(𝑥|𝜃) = 𝜃 Beta(𝑎 + 1, 𝑏): 𝑓(𝜃|𝑥) = 𝑐3𝜃𝑎(1 − 𝜃)𝑏−1 

𝜃 𝑥 = 0 𝑓(𝜃) = 𝑐1𝜃𝑎−1(1 − 𝜃)𝑏−1 𝑝(𝑥|𝜃) = 1 − 𝜃 Beta(𝑎, 𝑏 + 1): 𝑓(𝜃|𝑥) = 𝑐4𝜃𝑎−1(1 − 𝜃)𝑏 

The constants 𝑐1, 𝑐3 and 𝑐4 have the same formulas as in the previous (binomial likelihood 
case) with 𝑁 = 1. 

5.3 Geometric likelihood 

Recall that the geometric(𝜃) distribution describes the probability of 𝑥 successes before 
the first failure, where the probability of success on any single independent trial is 𝜃. The 
corresponding pmf is given by 𝑝(𝑥) = 𝜃𝑥(1 − 𝜃). 
Now suppose that we have a data point 𝑥, and our hypothesis 𝜃 is that 𝑥 is drawn from a 
geometric(𝜃) distribution. From the table we see that the beta distribution is a conjugate 
prior for a geometric likelihood as well: 

hypothesis data prior likelihood posterior 

𝜃 𝑥 
Beta(𝑎, 𝑏) 
= 𝑓(𝜃) = 𝑐1𝜃𝑎−1(1 − 𝜃)𝑏−1 

geometric(𝜃) 
= 𝑝(𝑥|𝜃) = 𝜃𝑥(1 − 𝜃) 

Beta(𝑎 + 𝑥, 𝑏 + 1)
𝑓(𝜃|𝑥) = 𝑐3𝜃𝑎+𝑥−1(1 − 𝜃)𝑏 



5 18.05 Class 15, Conjugate priors: Beta and normal, Spring 2022 

At first it may seem strange that the beta distribution is a conjugate prior for both the 
binomial and geometric distributions. The key reason is that the geometric likelihood is 
proportional to a binomial likelihood as a function of 𝜃. Let’s illustrate this in a concrete 
example. 
Example 3. While traveling through the Mushroom Kingdom, Mario and Luigi find some 
rather unusual coins. They agree on a prior of 𝑓(𝜃) ∼ Beta(5,5) for the probability of heads, 
though they disagree on what experiment to run to investigate 𝜃 further. 
(a) Mario decides to flip a coin 5 times. He gets four heads in five flips. 
(b) Luigi decides to flip a coin until the first tails. He gets four heads before the first tail. 
Show that Mario and Luigi will arrive at the same posterior on 𝜃, and calculate this posterior. 
Solution: We will show that both Mario and Luigi find the posterior pdf for 𝜃 is a Beta(9, 6) 
distribution. 
Mario’s table 

hypothesis data prior likelihood posterior 

𝜃 𝑥 = 4 
Beta(5, 5) 

= 𝑐1𝜃4(1 − 𝜃)4 
binomial(5, 𝜃) 
= (5

4)𝜃4(1 − 𝜃) 
??? 

= 𝑐3𝜃8(1 − 𝜃)5 

Luigi’s table 

hypothesis data prior likelihood posterior 

𝜃 𝑥 = 4 
Beta(5, 5) 

= 𝑐1𝜃4(1 − 𝜃)4 
geometric(𝜃) 
= 𝜃4(1 − 𝜃) 

??? 
= 𝑐3𝜃8(1 − 𝜃)5 

Since both Mario and Luigi’s posteriors have the form of a Beta(9, 6) distribution that’s 
what they both must be. The normalizing factor must be the same in both cases because 
it’s determined by requiring the total probability to be 1. 

6 Bayesian updating with continuous hypotheses and contin-
uous data 

The idea here is essentially identical to the Bayesian updating we’ve already done. The 
only change is, with a continuous likelihood, we have to compute the total probability of 
the data (i.e. sum of the Bayes numerator column, i.e. normalizing factor) as an integral 
instead of a sum. We will cover this briefly. For those who are interested, a bit more detail 
is given in an optional note. 
Notation 

• Hypotheses 𝜃. For continuous hypotheses, this really means that we hypothesize that 
the parameter is in a small interval of size 𝑑𝜃 around 𝜃. 

• Data 𝑥. For continuous data, this really means that the data is in a small interval of 
size 𝑑𝑥 around 𝑥. 

• Prior 𝑓(𝜃)𝑑𝜃. This is our initial belief about the probability that the parameter is in 
a small interval of size 𝑑𝜃 around 𝜃. 
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• Likelihood 𝜙(𝑥 | 𝜃). So the probability that the data is in a small interval of size 𝑑𝑥 
around 𝑥, ASSUMING the hypothesis 𝜃 is 𝜙(𝑥 | 𝜃) 𝑑𝑥 

• Posterior 𝑓(𝜃 | 𝑥) 𝑑𝜃. This is the (calculated) probability that the parameter is in a 
small interval of size 𝑑𝜃 around 𝜃, GIVEN the data 𝑥. 

hypoth. prior likelihood 

Bayes 

numerator posterior 

𝜃 𝑓(𝜃) 𝑑𝜃 𝜙(𝑥 | 𝜃) 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 
𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃𝑓(𝜃 | 𝑥) 𝑑𝜃 = 𝜙(𝑥) 

total 
(integrate over 𝜃) 

1 no sum 𝜙(𝑥) = ∫ 𝜙(𝑥 | 𝜃)𝑓(𝜃) 𝑑𝜃 

= prior prob. density for data 𝑥 

1 

Continuous-continuous Bayesian update table 

To summarize: the prior probabilities of hypotheses and the likelihoods of data given hy-
pothesis were given; the Bayes numerator is the product of the prior and likelihood; the 
total likelihood 𝜙(𝑥) is the integral of the probabilities in the Bayes numerator column; we 
divide by 𝜙(𝑥) to normalize the Bayes numerator. 

7 Normal begets normal 

We now turn to an important example of coninuous-continuous updating: the normal dis-
tribution is its own conjugate prior. In particular, if the likelihood function is normal with 
known variance, then a normal prior gives a normal posterior. Now both the hypotheses 
and the data are continuous. 
Suppose we have a measurement 𝑥 ∼ 𝑁(𝜃, 𝜎2) where the variance 𝜎2 is known. That is, the 
mean 𝜃 is our unknown parameter of interest and we are given that the likelihood comes 
from a normal distribution with variance 𝜎2. If we choose a normal prior pdf 

𝑓(𝜃) ∼ N(𝜇prior, 𝜎2 
prior) 

then the posterior pdf is also normal: 𝑓(𝜃|𝑥) ∼ N(𝜇post, 𝜎2 ) wherepost 

𝜇post = 
𝜇prior + 𝑥 1 = 1 + 1 (1)𝜎2 𝜎2 𝜎2 

, 𝜎2 𝜎2 𝜎2 
post prior post prior 

The following form of these formulas is easier to read and shows that 𝜇post is a weighted 
average between 𝜇prior and the data 𝑥. 

1 1 𝑎𝜇prior + 𝑏𝑥 1𝑎 = 𝑏 = , 𝜎2 (2)𝜇post = post = 𝜎2 𝜎2 , 𝑎 + 𝑏 𝑎 + 𝑏 
. 

prior 

With these formulas in mind, we can express the update via the table: 
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hypothesis data prior likelihood posterior 

𝜃 𝑥 
𝑓(𝜃) ∼ N(𝜇prior, 𝜎2 

prior) 

= 𝑐1 exp (−(𝜃−𝜇prior)2 

)2𝜎2 
prior 

𝜙(𝑥|𝜃) ∼ N(𝜃, 𝜎2) 

= 𝑐2 exp (−(𝑥−𝜃)2 )2𝜎2 

𝑓(𝜃|𝑥) ∼ N(𝜇post, 𝜎2 )post

= 𝑐3 exp (−(𝜃−𝜇post)2 

)2𝜎2 
post 

We leave the proof of the general formulas to the problem set. It is an involved algebraic 
manipulation which is essentially the same as the following numerical example. 
Example 4. Suppose we have prior 𝜃 ∼ N(4, 8), and likelihood function likelihood 𝑥 ∼ 
N(𝜃, 5). Suppose also that we have one measurement 𝑥1 = 3. Show the posterior distribution 
is normal. 
Solution: We will show this by grinding through the algebra which involves completing 
the square. 

prior: 𝑓(𝜃) = 𝑐1 e−(𝜃−4)2/16; likelihood: 𝜙(𝑥1|𝜃) = 𝑐2 e−(𝑥1−𝜃)2/10 = 𝑐2 e−(3−𝜃)2/10 

We multiply the prior and likelihood to get the posterior: 

𝑓(𝜃|𝑥1) = 𝑐3 e−(𝜃−4)2/16 e−(3−𝜃)2/10 

= 𝑐3 exp (−(𝜃 − 4)2 

− 
(3 − 𝜃)2 

)16 10 

We complete the square in the exponent 

−(𝜃 − 4)2
− (3 − 𝜃)2 

= −5(𝜃 − 4)2 + 8(3 − 𝜃)2 

16 10 80 

= −13𝜃2 − 88𝜃 + 152 
80 

= −𝜃2 − 88
13𝜃 + 152 

80/13 
13 

= −(𝜃 − 44/13)2 + 152/13 − (44/13)2 

.80/13 

Therefore the posterior is 

− (𝜃−44/13)2+152/13−(44/13)2 − (𝜃−44/13)2 

80/13𝑓(𝜃|𝑥1) = 𝑐3 e 80/13 = 𝑐4 e . 

This has the form of the pdf for N(44/13, 40/13). QED 

For practice we check this against the formulas (2). 

𝜇prior = 4, 𝜎2 𝜎2 = 5 ⇒ 𝑎 = 1 𝑏 = 5
1.prior = 8, 8, 

Therefore 

𝑎𝜇prior + 𝑏𝑥 44𝜇post = = 13 
= 3.38𝑎 + 𝑏 

1 40𝜎2 = post = 13 
= 3.08.𝑎 + 𝑏 
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7.1 A word on weighted averages 

The updating formula 2 gives 𝜇post as a weighted average of the 𝜇prior and the data. The 
weight on 𝜇prior is 𝑎/(𝑎 + 𝑏), and the weight on the data is 𝑏/(𝑎 + 𝑏). These weights are 
always positive numbers summing to 1. If 𝑏 is very large (that is, if the data has a tiny 
variance) then most of the weight is on the data. If 𝑎 is very large (that is, 𝜎2 

prior is small, 
i.e. if you are very confident in your prior) then most of the weight is on the prior. 
In the above example the variance on the prior was bigger than the variance on the data, 
so 𝑎 was smaller than 𝑏; so the weight was mostly on the data. The posterior 3.38 for the 
mean was closer to the data 3 than to the prior 4 for the mean. 

7.2 Examples of normal-normal updating 

Example 5. Suppose that we know the data 𝑥 ∼ N(𝜃, 4/9) and we have prior N(0, 1). We 
get one data value 𝑥 = 6.5. Describe the changes to the pdf for 𝜃 in updating from the 
prior to the posterior. 
Solution: 𝜇prior = 0, 𝜎2 = 4/9. So, using the updating formulas 2 we have prior = 1, 𝜎2 

1 9 𝑎𝜇prior + 𝑏𝑥 1 4𝑎 = 1, 𝑏 = = 4.5, 𝜎2 =4/9 = 4, 𝜇post = 𝑎 + 𝑏 post = 𝑎 + 𝑏 13. 

Here is a graph of the prior and posterior pdfs with the data point marked by a red line. 

−2 0 2 4 6 8 10
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Prior in blue, posterior in orange, data = red line 

We see that the posterior mean is closer to the data point than the prior mean We also see 
that the posterior distribution is taller and narrower than the prior, i.e. it has a smaller 
variance. The smaller variance says that we are now more certain about where the value of 
𝜃 lies. 
Example 6. Use the formulas 2 to show that for normal-normal Bayesian updating we 
have: 
1. The posterior mean is always between the data point and the prior mean. 
2. The posterior variance is smaller than both the prior variance and 𝜎. That is, our 
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posterior uncetainty is smaller than both our prior uncertainty and the uncertainty in the 
data. 
Solution: Using the update formulas 2, we have The posterior mean is the weighted average 
of the prior mean and the data, so it must lie between the prior mean and the data. 
Also, the posterior variance is 

1𝜎2 
post = prior𝑎 + 𝑏 

< 𝑎
1 = 𝜎2 

That is the posterior has smaller variance than the prior, i.e. data makes us more certain 
about where in its range 𝜃 lies. 

1Likewise 𝜎2 = = 𝜎2. So, the posterior variance is smaller than 𝜎2.post 𝑎 + 𝑏 
< 

1
𝑏 

7.3 More than one data point 

Example 7. Suppose we have data 𝑥1, 𝑥2, 𝑥3. Use the formulas (1) to update sequentially. 
Solution: Let’s label the prior mean and variance as 𝜇0 and 𝜎0

2. The updated means and 
variances will be 𝜇𝑖 and 𝜎𝑖

2. In sequence we have 

1 
𝜎1

2 = 
1 
𝜎0

2 + 
1 
𝜎2 

; 𝜇1
𝜎1

2 = 
𝜇0
𝜎0

2 + 
𝑥1
𝜎2 

1 
𝜎2

2 = 
1 
𝜎1

2 + 
1 = 𝜎2 

1 
𝜎0

2 + 
2 
𝜎2 

; 𝜇2
𝜎2

2 = 
𝜇1
𝜎1

2 + 
𝑥2
𝜎2 

= 
𝜇0
𝜎0

2 + 
𝑥1 + 𝑥2

𝜎2 

1 
𝜎3

2 = 
1 
𝜎2

2 + 
1 =𝜎2 

1 
𝜎0

2 + 
3 
𝜎2 

; 𝜇3
𝜎3

2 = 
𝜇2
𝜎2

2 + 
𝑥3
𝜎2 

= 
𝜇0
𝜎0

2 + 
𝑥1 + 𝑥2 + 𝑥3

𝜎2 

The example generalizes to 𝑛 data values 𝑥1, … , 𝑥𝑛: 

Normal-normal update formulas for 𝑛 data points 

𝜇post 𝜇prior + 𝑛𝑥̄ 1 1 + 
𝑛 𝑥1 + … + 𝑥𝑛 = = 𝑥̄ = . (3)𝜎2 𝜎2 𝜎2 

, 𝜎2 𝜎2 𝜎2 
, 𝑛 post prior post prior 

Again we give the easier to read form, showing 𝜇post is a weighted average of 𝜇prior and the 
sample average 𝑥:̄ 

1 𝑛 𝑎𝜇prior + 𝑏𝑥̄ 1𝑎 = 𝑏 = = , 𝜎2 = (4)𝜇post post 𝜎2 𝜎2 , 𝑎 + 𝑏 𝑎 + 𝑏 
. 

prior 

Interpretation: 𝜇post is a weighted average of 𝜇prior and 𝑥.̄ If the number of data points is 
large then the weight 𝑏 is large and 𝑥̄ will have a strong influence on the posterior. If 𝜎2 

prior
is small then the weight 𝑎 is large and 𝜇prior will have a strong influence on the posterior. 
To summarize: 
1. Lots of data has a big influence on the posterior. 
2. High certainty (low variance) in the prior has a big influence on the posterior. 
The actual posterior is a balance of these two influences. 
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