Class 17 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. What would a frequentist say?

Each day Jaam arrives X hours late to class, with $X \sim$ uniform $(0, \theta)$, where θ is unknown. Jon models his initial belief about θ by a prior pdf $f(\theta)$. After Jaam arrives x hours late to the next class, Jon computes the likelihood function $\phi(x \mid \theta)$ and the posterior pdf $f(\theta \mid x)$.

Which of these probability computations would the frequentist consider valid?

1. none
2. prior and posterior
3. prior
4. prior and likelihood
5. likelihood
6. likelihood and posterior
7. posterior
8. prior, likelihood and posterior.

Concept question 2. Is it a statistic. Suppose x_{1}, \ldots, x_{n} is a sample from $\mathrm{N}\left(\mu, \sigma^{2}\right)$, where μ and σ are unknown.
Is each of the following a statistic?
(a) The median of x_{1}, \ldots, x_{n}.
(b) The interval from the 0.25 quantile to the 0.75 quantile of $\mathrm{N}\left(\mu, \sigma^{2}\right)$.
(c) The standardized mean $\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$.
(d) The set of sample values less than 1 unit from \bar{x}.
(e) The $z=\frac{\bar{x}-5}{3 / \sqrt{n}}$.
(f) $z=\frac{\bar{x}-\mu_{0}}{\sigma_{0} / \sqrt{n}}$, where μ_{0} and σ_{0} are given values,

Concept question 2. Picture the significance. The null and alternate pdfs are shown on the following plot

The significance level of the test is given by the area of which region?

1. R_{1}
2. R_{2}
3. R_{3}
4. R_{4}
5. $R_{1}+R_{2}$
6. $R_{2}+R_{3}$
7. $R_{2}+R_{3}+R_{4}$
8. None of these

Board questions

Problem 1. Testing coins

Suppose we have a coin with an unknown probability of heads θ.
Test statistic $x=$ number of heads in 10 tosses.
Null hypothesis $H_{0}: \theta=0.5$ (fair coin).
Alternative hypothesis $H_{A}: \theta \neq 0.5$ (unfair coin, two-sided).
(a) The rejection region is are the values of x shown in orange. What's the significance level?

x	0	1	2	3	4	5	6	7	8	9	10
$p\left(x \mid H_{0}\right)$	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001

(b) For significance level $\alpha=0.05$, find a two-sided rejection region.

Problem 2. z statistic

Suppose we know the following about our null hypothesis significance test.

- H_{0} : data follows a $N\left(5,10^{2}\right)$
- H_{A} : data follows a $N\left(\mu, 10^{2}\right)$ where $\mu \neq 5$.
- Test statistic: $z=$ standardized \bar{x}.
- Data: 64 data points with $\bar{x}=6.25$.
- Significance level set to $\alpha=0.05$.
(a) Find the rejection region; draw a picture.
(b) Find the z-value; add it to your picture.
(c) Decide whether or not to reject H_{0} in favor of H_{A}.
(d) Find the p-value for this data; add to your picture.
(e) What's the connection between the answers to (b), (c) and (d)?

Problem 2. More coins

Two coins: probability of heads is 0.5 for C_{1}; and 0.6 for C_{2}.
We pick one at random, flip it 8 times and get 6 heads.
Here are the probability tables for the two coins

k	0	1	2	3	4	5	6	7	8
$p(k \mid \theta=0.5)$	0.004	0.031	0.109	0.219	0.273	0.219	0.109	0.031	0.004
$p(k \mid \theta=0.6)$	0.001	0.008	0.041	0.124	0.232	0.279	0.209	0.090	0.017

(a) $H_{0}=$ 'The coin is $C_{1}{ }^{\prime} \quad H_{A}=$ 'The coin is $C_{2}{ }^{\prime}$

Do you reject H_{0} at the significance level $\alpha=0.05$?
(Hint: First decide if this test is two-sided, left-sided or right-sided. Then determine the rejection region.)
(b) $H_{0}=$ 'The coin is $C_{2}{ }^{\prime} \quad H_{A}=$ 'The coin is $C_{1}{ }^{\prime}$

Do you reject H_{0} at the significance level $\alpha=0.05$?
(c) Do your answers to (a) and (b) seem paradoxical

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

