Class 17 in-class problems, 18.05, Spring 2022

Concept questions

Concept question 1. What would a frequentist say?

Each day Jaam arrives X hours late to class, with $X \sim$ uniform $(0, \theta)$, where θ is unknown. Jon models his initial belief about θ by a prior pdf $f(\theta)$. After Jaam arrives x hours late to the next class, Jon computes the likelihood function $\phi(x \mid \theta)$ and the posterior pdf $f(\theta \mid x)$.

Which of these probability computations would the frequentist consider valid?

1. none
2. prior and posterior
3. prior
4. prior and likelihood
5. likelihood
6. likelihood and posterior
7. posterior
8. prior, likelihood and posterior.

Solution: 3. likelihood
Both the prior and posterior are probability distributions on the possible values of the unknown parameter θ, i.e. a distribution on hypothetical values. The frequentist does not consider them valid.

The likelihood $\phi(x \mid \theta)$ is perfectly acceptable to the frequentist. It represents the probability of data from a repeatable experiment, i.e. measuring how late Jane is each day. Conditioning on θ is fine. This just fixes a model parameter θ. It doesn't require computing probabilities of values of θ.

Concept question 2. Is it a statistic. Suppose x_{1}, \ldots, x_{n} is a sample from $N\left(\mu, \sigma^{2}\right)$, where μ and σ are unknown.

Is each of the following a statistic?
(a) The median of x_{1}, \ldots, x_{n}.
(b) The interval from the 0.25 quantile to the 0.75 quantile of $N\left(\mu, \sigma^{2}\right)$.
(c) The standardized mean $\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$.
(d) The set of sample values less than 1 unit from \bar{x}.
(e) The $z=\frac{\bar{x}-5}{3 / \sqrt{n}}$.
(f) $z=\frac{\bar{x}-\mu_{0}}{\sigma_{0} / \sqrt{n}}$, where μ_{0} and σ_{0} are given values,
(a) Yes. The median only depends on the data x_{1}, \ldots, x_{n}.
(b) No. This interval depends only on the distribution parameters μ and σ. It does not consider the data at all.
(c) No. this depends on the values of the unknown parameters μ and σ.
(d) Yes. \bar{x} depends only on the data, so the set of values within 1 of \bar{x} can all be found by working with the data.
(e) Yes. This is computed from the data and other known values.
(f) Yes. This is computed from the data and other known values.

Concept question 2. Picture the significance. The null and alternate pdfs are shown on the following plot

The significance level of the test is given by the area of which region?

1. R_{1}
2. R_{2}
3. R_{3}
4. R_{4}
5. $R_{1}+R_{2}$
6. $R_{2}+R_{3}$
7. $R_{2}+R_{3}+R_{4}$
8. None of these

Solution: 7. $R_{2}+R_{3}$. This is the area under the pdf for H_{0} above the rejection region.

Board questions

Problem 1. Testing coins

Suppose we have a coin with an unknown probability of heads θ.
Test statistic $x=$ number of heads in 10 tosses.
Null hypothesis $H_{0}: \theta=0.5 \quad$ (fair coin).
Alternative hypothesis $H_{A}: \theta \neq 0.5$ (unfair coin, two-sided).
(a) The rejection region is are the values of x shown in orange. What's the significance level?

x	0	1	2	3	4	5	6	7	8	9	10
$p\left(x \mid H_{0}\right)$	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001

(b) For significance level $\alpha=0.05$, find a two-sided rejection region.

Solution: (a) $\alpha=0.11$

x	0	1	2	3	4	5	6	7	8	9	10
$p\left(x \mid H_{0}\right)$	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001

(b) $\alpha=0.05$

x	0	1	2	3	4	5	6	7	8	9	10
$p\left(x \mid H_{0}\right)$	0.001	0.010	0.044	0.117	0.205	0.246	0.205	0.117	0.044	0.010	0.001

Problem 2. z statistic

Suppose we know the following about our null hypothesis significance test.

- H_{0} : data follows a $N\left(5,10^{2}\right)$
- H_{A} : data follows a $N\left(\mu, 10^{2}\right)$ where $\mu \neq 5$.
- Test statistic: $z=$ standardized \bar{x}.
- Data: 64 data points with $\bar{x}=6.25$.
- Significance level set to $\alpha=0.05$.
(a) Find the rejection region; draw a picture.
(b) Find the z-value; add it to your picture.
(c) Decide whether or not to reject H_{0} in favor of H_{A}.
(d) Find the p-value for this data; add to your picture.
(e) What's the connection between the answers to (b), (c) and (d)?

The null distribution $\phi\left(z \mid H_{0}\right) \sim N(0,1)$
(a) The rejection region is $|z|>1.96$, i.e. 1.96 or more standard deviations from the mean.
(b) Standardizing $z=\frac{\bar{x}-5}{5 / 4}=\frac{1.25}{1.25}=1$.
(c) Do not reject since z is not in the rejection region.
(d) Use a two-sided p-value $p=P(|Z|>1)=0.32$.

(e) The z-value not being in the rejection region tells us exactly the same thing as the p-value being greater than the significance, i.e. don't reject the null hypothesis H_{0}.

Problem 2. More coins

Two coins: probability of heads is 0.5 for C_{1}; and 0.6 for C_{2}.
We pick one at random, flip it 8 times and get 6 heads.
Here are the probability tables for the two coins

k	0	1	2	3	4	5	6	7	8
$p(k \mid \theta=0.5)$	0.004	0.031	0.109	0.219	0.273	0.219	0.109	0.031	0.004
$p(k \mid \theta=0.6)$	0.001	0.008	0.041	0.124	0.232	0.279	0.209	0.090	0.017

(a) $H_{0}=$ 'The coin is $C_{1}{ }^{\prime} \quad H_{A}=$ 'The coin is C_{2} '

Do you reject H_{0} at the significance level $\alpha=0.05$?
(Hint: First decide if this test is two-sided, left-sided or right-sided. Then determine the rejection region.)
(b) $H_{0}=$ 'The coin is $C_{2}, \quad H_{A}=$ 'The coin is C_{1} '

Do you reject H_{0} at the significance level $\alpha=0.05$?
(c) Do your answers to (a) and (b) seem paradoxical

Solution: (a) Since $0.6>0.5$ we use a right-sided rejection region.
Under H_{0} the probability of heads is 0.5 . Using the table we find a one sided rejection region $\{7,8\}$. That is we will reject H_{0} in favor of H_{A} only if we get 7 or 8 heads in 8 tosses.

Since the value of our data $x=6$ is not in our rejection region we do not reject H_{0}.
(b) Since $0.6>0.5$ we use a left-sided rejection region.

Now under H_{0} the probability of heads is 0.6 . Using the table we find a one sided rejection region $\{0,1,2\}$. That is we will reject H_{0} in favor of H_{A} only if we get 0,1 or 2 heads in 8 tosses.

Since the value of our data $x=6$ is not in our rejection region we do not reject H_{0}.
(c) The fact that we don't reject C_{1} in favor of C_{2} or C_{2} in favor of C_{1} reflects the asymmetry in NHST. The null hypothesis is the cautious choice. That is, we only reject H_{0} if the data is extremely unlikely when we assume H_{0}. This is not the case for either C_{1} or C_{2}.

MIT OpenCourseWare
https://ocw.mit.edu

18.05 Introduction to Probability and Statistics

Spring 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

